
1/6

July 12, 2022

Processing a ValueSet or PropertySet even in the face of
possible mutation, part 1

devblogs.microsoft.com/oldnewthing/20220712-00

Raymond Chen

We’ve been looking at how you can non-intrusively monitor changes to a ValueSet or

PropertySet. Typically this is so that you can take any changes made by the client and

propagate them somewhere.

Let’s say that you want to take the modified collection and save the whole thing to disk. How

can you do this?

Well, your first attempt might be to do this:

void MyPropertySet::Save()

{

 SomeKindOfDataBuffer buffer;

 for (auto [key, value] : m_propertySet) {

 buffer.AddKeyAndValue(key, value);

 }

 SaveToFile(buffer);

}

Iterating over the wrapped collection and saving the results is a good start, but the iterator

will throw hresult_changed_state if the collection changes during the iteration.

What we need to do is capture the collection, and when we succeed in capturing it all, we can

save it. The copy can’t mutate since we haven’t given anybody else access to it, so iterating

over it is safe from an hresult_changed_state exception.

void MyPropertySet::Save()

{

 auto copy = CapturePropertySet(m_propertySet);

 SomeKindOfDataBuffer buffer;

 for (auto [key, value] : copy) {

 buffer.AddKeyAndValue(key, value);

 }

 SaveToFile(buffer);

}

https://devblogs.microsoft.com/oldnewthing/20220712-00/?p=106858

2/6

I’m assuming here that converting the property set to some kind of data buffer is a slow

operation, which is why it’s done as a separate pass over the captured data.

One way to capture the property set would be to transfer it into another property set:

auto CapturePropertySet(winrt::PropertySet const& propertySet)

{

 winrt::PropertySet copy;

 for (auto [key, value] : m_propertySet) {

 copy.Insert(key, value);

 }

 return copy;

}

Alternatively, since we really just want to capture the key/value pairs, we could just save the

key/value pairs:

auto CapturePropertySet(winrt::PropertySet const& propertySet)

{

 return std::vector(begin(propertySet), end(propertySet));

}

Okay, so we ensured that the collection doesn’t change while we’re saving it, but what if it

mutates while we’re copying it? In that case, the hresult_changed_state exception

occurs, and the Save() fails with an exception.

You probably don’t want to propagate this exception back to the caller, because they have no

idea that this is even happening. They added a property to the property set, and on another

thread, they added another property to the same property set, and somehow the first thread

gets a hresult_changed_state exception. What state changed? What did they do

wrong?

They didn’t do anything wrong. The problem is in your Save code.

Let’s catch the exception and quietly abandon the Save operation. The idea here is that the

hresult_changed_state exception occurs if another thread updated the property set

after we started saving it. In that case, we should abandon our attempt to save the property

set and let that other thread save it.

3/6

void MyPropertySet::Save()

{

 winrt::PropertySet copy{ nullptr };

 try {

 copy = CapturePropertySet(m_propertySet);

 } catch (winrt::hresult_changed_state const&) {

 // Abandon the operation.

 // The mutating thread will do its own Save.

 return;

 }

 SomeKindOfDataBuffer buffer;

 for (auto [key, value] : copy) {

 buffer.AddKeyAndValue(key, value);

 }

 SaveToFile(buffer);

}

As I mentioned earlier, I’m assuming here that we are converting the property set to a data

buffer as a separate pass because it is slow. If the conversion is fast, you may as well do it

while iterating:

void MyPropertySet::Save()

{

 SomeKindOfDataBuffer buffer;

 try {

 for (auto [key, value] : m_propertySet) {

 buffer.AddKeyAndValue(key, value);

 }

 } catch (winrt::hresult_changed_state const&) {

 // Abandon the operation.

 // The mutating thread will do its own Save.

 return;

 }

 SaveToFile(buffer);

}

There is still a problem here, though. Consider this sequence of events:

Thread 1 Thread 2

Insert

Save

Build the buffer

 Insert

 Save

4/6

 Build the buffer

 SaveToFile

 Save returns

SaveToFile

Save returns

Both attempts to capture the data in the property set succeed because the property set did

not change during the capture of the property set into the buffer. However, the second

capture was able to race ahead of the first one, which means that the latest saved copy from

Thread 2 gets overwritten by the stale copy in Thread 1.

One idea here is have the Save function make one last check before saving that what it

saved is still the latest copy. To avoid the race between the final check and the SaveToFile ,

we will need a lock.

void MyPropertySet::Save()

{

 SomeKindOfDataBuffer buffer;

 try {

 auto it = m_propertySet.First();

 if (it.HasCurrent()) {

 do {

 auto current = it.Current();

 buffer.AddKeyAndValue(current.Key(), current.Value());

 } while (it.MoveNext());

 }

 auto guard = m_lock.lock();

 // verify that the collection is still unchanged before saving

 std::ignore = it.HasCurrent();

 SaveToFile(buffer);

 } catch (winrt::hresult_changed_state const&) {

 // Abandon the operation.

 // The mutating thread will do its own Save.

 return;

 }

}

After we build the results in the data buffer, we enter the lock and make one final check that

the collection hasn’t changed. The return value is not what we are interested in, since we

know that it will return false if it returns at all, seeing as we iterated to the end of the

collection in the preceding loop. What we are interested in is checking whether it will throw

5/6

an exception due to the collection having been mutated. Assigning to std::ignore is the

same as throwing the value away, except it avoids a [[nodiscard]] warning and is

arguably clearer that discarding the value is intentional.

Thread 1 Thread 2

Insert

Save

Build the buffer

 Insert

 Save

 Build the buffer

enter lock enter lock

If Thread 1 wins the race to enter the lock, then the final HasCurrent() check will throw

hresult_changed_state , and the SaveToFile will not happen. Thread 2 then gets a

chance to save, and its test of HasCurrent() will not throw, so it is the one that gets to

perform the SaveToFile .

On the other hand, if Thread 2 wins the race to enter the lock, then Thread 2’s

HasCurrent() will not throw, so it will perform SaveToFile . And then Thread 1 gets the

lock and checks HasCurrent() , which throws, so Thread 1 does not save its now-outdated

data.

There is also a race condition where there is a redundant save:

Thread 1 Thread 2

Insert

 Insert

Save

 Save

Build the buffer

 Build the buffer

enter lock

6/6

HasCurrent does not throw

SaveToFile

exit lock

 enter lock

 HasCurrent does not throw

 SaveToFile

 exit lock

Since Thread 1 got off to a late start, it started building the data buffer after Thread 2 already

snuck in and changed the property set, so it unwittingly created an up-to-date copy. At least

here the race condition is harmless, albeit perhaps inefficient.

The model here is that each Save operation tries to save as fast as it can, but bails out if it

discovers that it is not the winner. This means that the Save method’s running time is

basically the time it takes to serialize and save the property set once.

Next time, we’ll look at another solution to the concurrency problem which has its own

separate advantages and disadvantages.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

