
1/3

July 8, 2022

Windows Runtime observable collections don’t mix well
with multithreading

devblogs.microsoft.com/oldnewthing/20220708-00

Raymond Chen

The Windows Runtime provides observable collections IObservableVector<T> and

IObservableMap<K, V> . Observability adds VectorChanged and MapChanged events

(respectively) to allow you to be called back when the underlying collection changes.

These notifications interact poorly with multi-threading: What happens if while the thread is

processing the previous change, another thread tries to mutate the collection?

Different implementations of the observable collection interfaces behave differently.

C#’s observable collections came first. From reading the reference source, we see that

mutation methods throw an InvalidOperationException if they are mutated while a

Changed event handler is active. (More detailed discussion in this StackOverflow question.)

It is apparent that this object was designed for single-threaded use: The reentrancy checks

apply to the object as a whole, regardless of thread. Furthermore, the code doesn’t block

reentrancy until it’s about to raise the Changed event. Here’s an abbreviated version:

protected override void InsertItem(int index, T item)

{

 CheckReentrancy();

 base.InsertItem(index, item);

 using (BlockReentrancy())

 {

 /* raise the CollectionChanged event */

 }

}

That creates this multithreaded race condition:

Thread 1 Thread 2

InsertItem

https://devblogs.microsoft.com/oldnewthing/20220708-00/?p=106847
https://referencesource.microsoft.com/#System/compmod/system/collections/objectmodel/observablecollection.cs
https://stackoverflow.com/questions/6247427/blockreentrancy-in-observablecollectiont

2/3

CheckReentrancy (succeeds)

base.InsertItem

 InsertItem

 CheckReentrancy (succeeds)

 base.InsertItem

BlockReentrancy

Raise the event

Handler sees inconsistent collection

Note that Thread 1’s Changed event handler is called after the collection has been changed by

Thread 2, so when it goes to look at the collection to find the item that got inserted, it may

not actually be there because Thread 2 already changed the collection.

This makes sense because the C# ObservableCollection is explicitly not thread-safe:

IsSynchronized always returns false .

The Windows Runtime ValueSet and PropertySet are also observable, and they follow

roughly the same model as the C# observable collections they were patterned after:

Modifications to the collection are disallowed when a change notification is active. The

operation will fail with the exception RO_E_CHANGE_NOTIFICATION_IN_PROGRESS . The

Windows Runtime collections do take a little extra care to avoid the “inconsistent collection”

problem: The concurrent call from Thread 2 fails rather than passing the initial concurrency

check. (Basically by moving the BlockReentrancy to the top of the function.)

Observable maps created by C++/WinRT follow yet another pattern: They do not block

subsequent operations while the Changed event is being raised. This means that handlers in

this case have to be prepared for the case that the collection’s state can change out from

under them.

Oh, and what about C++/CX? Easy: They simply don’t support concurrency at all!

The C++/CX collection types support the same thread safety guarantees that STL containers
support.

The concurrency policy for STL containers is that concurrent reads are permitted, but no

other operation can be concurrent with a write.

What does this all mean for you?

https://docs.microsoft.com/en-us/cpp/cppcx/collections-c-cx?view=msvc-160

3/3

Limit your use of observable collections to single-threaded scenarios. Observable collections

were originally created for UI data binding, which is single-threaded, and that’s why the

observable collection pattern doesn’t extend well to multi-threaded scenarios. Furthermore,

do not mutate the collection during the change notification.

If you cannot avoid using observable collections in multi-threaded scenarios, then you have

to understand that it’s not going to be a great experience. We’ve found four patterns so far:

Implementation Concurrent write Write during notification

C# Unprotected Rejected

C++/CX Undefined Undefined

ValueSet / PropertySet Allowed Rejected

C++/WinRT single_threaded_… Undefined Undefined

C++/WinRT multi_threaded_… Allowed Allowed

In the bottom row, we see that the C++/WinRT multi-threaded collections allow a write

during a change notification. This means that change notification handlers in the bottom row

need to be prepared for the possibility that the collection changes while the change handler is

running.

We’ll look some more at that bottom row next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

