
1/2

July 6, 2022

The empty Windows Runtime string is not just a pretty
face

devblogs.microsoft.com/oldnewthing/20220706-00

Raymond Chen

As I noted some time ago, the empty Windows Runtime string is represented by a null

pointer. This has natural but perhaps surprising consequences: Even though it is a null

pointer, the empty Windows Runtime string is a real string, with hopes and dreams. Or at

least a length and data.

At the ABI level, WindowsGetStringLen reports that a null pointer string has a length of

zero, and WindowsGetStringRawBuffer gives you a buffer that consists of a single null

terminator.

Since an empty string and a null pointer are indistinguishable at the ABI layer, if you operate

at the ABI layer (using raw HSTRING s) or at a thin projection layer (such as C++/CX and

C++/WinRT), you can take advantage of this equivalence.

For starters, you don’t need to check for a null pointer before trying to use the string, because

a null pointer is a perfectly valid HSTRING .

ABI if (s != nullptr &&

 WindowsGetStringLen(s)

== 1)

if (s != nullptr &&

 s ==

HStringReference(L"hi").Get())

C++/CX if (s != nullptr &&

 s->Length() == 1)

if (s != nullptr &&

 s == L"hi")

C++/WinRT if (s != hstring{} &&

 s.size() == 1)

if (s != hstring{} &&

 s == L"hi"sv)

If you are checking for a nonempty string, you can just check for null. C++/WinRT and

C++/CX even have special methods that tell you directly.

 Slower way Quicker way

https://devblogs.microsoft.com/oldnewthing/20220706-00/?p=106836
https://devblogs.microsoft.com/oldnewthing/20160615-00/?p=93675

2/2

ABI if (WindowsGetStringLen(s) != 0) if (s != nullptr)

C++/CX if (s->Length() != 0) if (!s->IsEmpty())

C++/WinRT if (s.size() != 0) if (!s.empty())

Related: The C++/CX String^ is not an object, even though it wears a hat.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20211230-00/?p=106063
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

