
1/3

July 4, 2022

The case of the constructor that was being ignored
devblogs.microsoft.com/oldnewthing/20220704-00

Raymond Chen

When I pointed out a way to build URL query strings in the Windows Runtime, the customer

reported that it didn’t work.

#include <winrt/Windows.Web.Http.h>

void test()

{

 auto encoder = HttpFormUrlEncodedContent({

 { L"v", L"dQw4w9WgXcQ" },

 { L"t", L"43s" },

 });

}

This failed with the error

error C2440: '<function-style-cast>': cannot convert from 'initializer list' to
'winrt::Windows::Web::Http::HttpFormUrlEncodedContent'

message : No constructor could take the source type, or constructor overload
resolution was ambiguous

Let’s start debugging.

If you do a “Go to definition” on the HttpFormUrlEncodedContent in Visual Studio, you

are taken to the class definition, which happens to be in the header file impl/Windows.

Web.Http.2.h .

 struct __declspec(empty_bases) HttpFormUrlEncodedContent :

 Windows::Web::Http::IHttpContent,

 impl::require<HttpFormUrlEncodedContent, Windows::Foundation::IStringable>

 {

 HttpFormUrlEncodedContent(std::nullptr_t) noexcept {}

 HttpFormUrlEncodedContent(void* ptr, take_ownership_from_abi_t) noexcept :

 Windows::Web::Http::IHttpContent(ptr, take_ownership_from_abi) {}

 explicit HttpFormUrlEncodedContent(

 param::iterable<Windows::Foundation::Collections::

 IKeyValuePair<hstring, hstring>> const& content);

 };

https://devblogs.microsoft.com/oldnewthing/20220704-00/?p=106828
https://devblogs.microsoft.com/oldnewthing/20220630-00/?p=106805

2/3

Let’s look at these constructors one at a time.

First up is the nullptr constructor for creating an empty HttpFormUrlEncodedContent

smart pointer.

Next is the take_ownership_from_abi constructor for creating a HttpFormUrl‐

EncodedContent that takes over ownership of the object from a pointer obtained at the ABI

layer. It is a two-parameter constructor and therefore would never be considered since we are

calling the constructor with one parameter.

Last is the one we are trying to call: It takes a param::iterable of

IKeyValuePair<hstring, hstring> .

There are also two implicitly defined constructors: The copy and move constructor. Those

candidates look like this:

 HttpFormUrlEncodedContent(HttpFormUrlEncodedContent const&) = default;

 HttpFormUrlEncodedContent(HttpFormUrlEncodedContent &&) = default;

Okay, so we have four candidates that survived the arity check.

nullptr constructor.

param::iterable constructor.

copy constructor.

move constructor.

The error messages says that the compiler could not find a suitable constructor, so we have to

think about why the param::iterable constructor wasn’t chosen. We expect it to be

chosen bcause param::iterable has a conversion constructor that takes an

initializer_list . Why isn’t that conversion being used?

I could not reproduce the error in my test project, so I asked the customer to send me theirs.

I ran the file through the preprocessor so I could see exactly what the compiler saw, thinking

that maybe the customer had some #ifdef or other weird configuration.

I searched the preprocessed file for the param::iterable constructor.

And it wasn’t there!

The preprocessed file had a forward declaration for param::iterable , but no definition.

That explains why the compiler couldn’t convert the initializer_list to a

param::iterable : Because the conversion constructor hadn’t yet been declared!

The param::iterable template class is defined in the header file

winrt/Windows.Foundation.Collections.h , following the C++/WinRT rule that you

must explicitly include the header files for any namespaces you use. We are using the

3/3

Windows::Foundation::Collections namespace because that’s where the

IIterable class resides, and that is the projected type of the parameter that the Http‐

FormUrlEncodedContent constructor accepts.

This question started out as a “C++/WinRT problem” (which is how I got roped into it), but

all of the debugging just treated it as a “C++ problem”: It turns out that if there’s a particular

constructor you want to use, you should make sure the parameter types are defined.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

