
1/3

June 23, 2022

Writing a marshal-by-value marshaler, part 2
devblogs.microsoft.com/oldnewthing/20220623-00

Raymond Chen

When we last left our marshal-by-value marshaler, we had it marshal by value for all cases

that didn’t leave the computer. But it turns out that this is actually more work than

necessary: If the object is immutable (as marshal-by-value objects generally are) and is

staying inside the same process, then we can just use the free-threaded marshaler, assuming

the immutable state does not have thread affinity.

The idea here is that immutable objects are pretty much free-threaded already, seeing as they

have no mutable state that requires synchronization. So there’s no need to create a copy

when marshaling between apartments within the same process; we can just have all the

apartments access the object directly.

Old and busted:

client client

↓ ↓

data data

New hotness:

client client

↓ ↙︎

data

Clients within the same process don’t need a separate copy of the object. They can just share

the object.

https://devblogs.microsoft.com/oldnewthing/20220623-00/?p=106778

2/3

Of course, clients from other processes can take advantage of having their own copy, since

that would avoid inter-process calls to access the data. However, we permit this only for

other processes on the same computer, because processes on other computers may not have

our custom marshaler installed.

This means that we want to treat each of the three categories differently:

Category Desired marshaler

Same-process Free-threaded marshaler

Same-machine Marshal-by-value marshaler

Cross-machine Standard (marshal-by-reference) marshaler

It sounds like we’re going to have three cases to deal with, but we can collapse it down to two

by realizing that the free-threaded marshaler falls back to the standard marshaler when the

destination context is cross-machine.

bool ShouldMarshalByValue(DWORD dwDestContext)

{

 return // dwDestContext == MSHCTX_CROSSCTX || dwDestContext == MSHCTX_INPROC ||

 dwDestContext == MSHCTX_LOCAL || dwDestContext == MSHCTX_NOSHAREDMEM;
}

We no longer marshal by value in the same-process case, letting the free-threaded marshaler

take care of that and the cross-machine case.

None of our marshal-by-value business logic needs to change. What changes is our fallback

marshaler. Instead of falling back to the standard marshaler, we fall back to the free-threaded

marshaler.

 STDMETHODIMP GetUnmarshalClass(

 REFIID riid, void* pv, DWORD dwDestContext,

 void* pvDestContext, DWORD mshlflags,

 CLSID *clsid)

 {

 if (ShouldMarshalByValue(dwDestContext)) {

 *clsid = CLSID_MyClass;

 return S_OK;

 }

 ComPtr<IMarshal> marshal;

 RETURN_IF_FAILED(CoCreateFreeThreadedMarshaler(nullptr, &marshal));

 RETURN_IF_FAILED(marshal->GetUnmarshalClass(riid, pv, dwDestContext,

 pvDestContext, mshlflags, clsid));
 return S_OK;

 }

3/3

Identical one-line changes apply to GetMarshalSizeMax and MarshalInterface ; I won’t

write them out.

Next time, we’ll apply all that we learned to diagnosing a reference counting bug related to

marshaling.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

