
1/4

June 17, 2022

Writing a marshal-by-value marshaler, part 1
devblogs.microsoft.com/oldnewthing/20220617-41

Raymond Chen

Last time, we created a skeleton marshaler that does default marshaling. By itself, it’s not

very interesting, but we can use it as a starting point for implementing a marshal-by-value

object.

Marshaling by value is suitable for immutable objects, or at least objects which are logically

immutable. The object may internally perform caching to avoid redundant computation, but

the external behavior is as if the object were immutable. (Marshaling mutable objects by

value can result in surprises when the client calls a mutating method, which causes the

original object and its by-value-marshaled copy to fall out of sync.)

Even if your object is immutable, you will need to use the default marshal by reference if you

rely on object identity. Marshaling by value creates a clone of the object, which will not be

reference-identical with the original.

Okay, so you’ve decided that you want to marshal by value. For simplicity, let’s say that the

value in question is just a 32-bit integer.

bool ShouldMarshalByValue(DWORD dwDestContext)

{

 return dwDestContext == MSHCTX_CROSSCTX || dwDestContext == MSHCTX_INPROC ||
 dwDestContext == MSHCTX_LOCAL || dwDestContext == MSHCTX_NOSHAREDMEM;
}

We choose to use marshal by value for in-process marshaling as well as cross-process

marshaling, but not for cross-machine marshaling because our unmarshaler may not be

installed on the other machine.

First up is GetUnmarshalClass .

https://devblogs.microsoft.com/oldnewthing/20220617-41/?p=106760
https://devblogs.microsoft.com/oldnewthing/20220616-00/?p=106757

2/4

 STDMETHODIMP GetUnmarshalClass(

 REFIID riid, void* pv, DWORD dwDestContext,

 void* pvDestContext, DWORD mshlflags,

 CLSID *clsid)

 {

 if (ShouldMarshalByValue(dwDestContext)) {

 *clsid = CLSID_MyClass;

 return S_OK;

 }

 ComPtr<IMarshal> marshal;

 RETURN_IF_FAILED(CoGetStandardMarshal(riid, CastToUnknown(), dwDestContext,

 pvDestContext, mshlflags, &marshal));

 RETURN_IF_FAILED(marshal->GetUnmarshalClass(riid, pv, dwDestContext,

 pvDestContext, mshlflags, clsid));
 return S_OK;

 }

If we decide to marshal by value, then we return the CLSID of the unmarshaler. Here, as is

common, the object is its own unmarshaler, so we just ask for another instance of ourselves

to be created.

Next comes GetMarshalSizeMax . This one is easy because we don’t have any variable-sized

data.

 STDMETHODIMP GetMarshalSizeMax(

 REFIID riid, void* pv, DWORD dwDestContext,

 void* pvDestContext, DWORD mshlflags,

 LPDWORD size)

 {

 if (ShouldMarshalByValue(dwDestContext)) {

 *size = sizeof(m_value);

 return S_OK;

 }

 ComPtr<IMarshal> marshal;

 RETURN_IF_FAILED(CoGetStandardMarshal(riid, CastToUnknown(), dwDestContext,

 pvDestContext, mshlflags, &marshal));

 RETURN_IF_FAILED(marshal->GetMarshalSizeMax(riid, pv, dwDestContext,

 pvDestContext, mshlflags, size));

 return S_OK;

 }

Marshaling the interface consists of just saving the 32-bit integer to the stream.

3/4

 STDMETHODIMP MarshalInterface(

 IStream* pstm,

 REFIID riid, void* pv, DWORD dwDestContext,

 void* pvDestContext, DWORD mshlflags)

 {

 if (ShouldMarshalByValue(dwDestContext)) {

 RETURN_IF_FAILED(pstm->Write(&m_value, sizeof(m_value), nullptr));

 return S_OK;

 }

 ComPtr<IMarshal> marshal;

 RETURN_IF_FAILED(CoGetStandardMarshal(riid, CastToUnknown(), dwDestContext,

 pvDestContext, mshlflags, &marshal));

 RETURN_IF_FAILED(marshal->MarshalInterface(pstm, riid, pv, dwDestContext,

 pvDestContext, mshlflags));

 return S_OK;

 }

Note that in all of the above cases, we delegate any unwanted destination contexts to the

standard marshaler. This is the recommended behavior, so that the system can add new

destination contexts in the future. The documentation for CoGetStandardMarshal calls this

out as a neat idea, but the documentation for IMarshal::GetUnmarshalClass calls it out as

an imperative.

That takes care of the marshaling. Now comes the unmarshaling:

 STDMETHODIMP UnmarshalInterface(IStream* pstm, REFIID riid, void** ppv)

 {

 *ppv = nullptr;

 ULONG actual;

 RETURN_IF_FAILED(pstm->Read(&m_value, sizeof(m_value), &actual));

 RETURN_HR_IF(E_FAIL, actual != sizeof(m_value));

 return QueryInterface(riid, ppv);

 }

We set up this object to be its own unmarshaler, so the unmarshaler reads the 32-bit integer

from the stream into its internal state, and then returns the requested interface of itself. In

the general case, the unmarshaler is permitted to create a new object or even reuse an

existing one.

Exercise: Why don’t we need to check ShouldMarshalByValue first?

The last group of functions is the cleanup functions.

https://docs.microsoft.com/en-us/windows/win32/api/combaseapi/nf-combaseapi-cogetstandardmarshal
https://docs.microsoft.com/en-us/windows/win32/api/objidl/nf-objidl-imarshal-getunmarshalclass

4/4

 STDMETHODIMP ReleaseMarshalData(IStream* pstm)

 {

 RETURN_IF_FAILED(pstm->Seek({ sizeof(m_value), 0 }, STREAM_SEEK_CUR,
nullptr));

 return S_OK;

 }

 STDMETHODIMP DisconnectObject(DWORD dwReserved)

 {

 return E_UNEXPECTED;

 }

We have no special state in our marshal data to clean up, so all we have to do is seek over it.

The ReleaseMarshalData is expected to exit with the stream pointer pointing just past the

marshal data. The reason for this is that serializing a data structure is inherently recursive,

and COM needs to be able to move on to the next object to be released.

We’ll take a digression into stream management before returning to the marshal-by-value

marshaler.

Answer to exercise: In the cases where ShouldMarshalByValue is false, we delegate to

the standard marshaler. The fact that our custom marshaler is active at all means that we

must be in the case where ShouldMarshalByValue is true.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

