
1/3

June 14, 2022

What are the various usage patterns for manually-
marshaled interfaces?

devblogs.microsoft.com/oldnewthing/20220614-00

Raymond Chen

COM organizes threads into apartments. All the thread in an apartment have access to the

same objects, and if you want to grant access to another apartment, you have to do it by a

mechanism known as marshaling.

The easiest way to marshal an object’s interface is to ask somebody else to manage it for you:

The RoGetAgileReference function creates a new object that represents an agile reference

to the original object. In COM, the term agile means that it can be used in any apartment.

You can then ask that agile reference to resolve a reference to the original interface, and it

will give you an object which you can use from the apartment doing the resolving.

Bonus reading: When should I use delayed-marshaling when creating an agile reference?

A lower-level method is to use CoMarshalInterThreadInterfaceInStream to take an

object interface and save it into a byte stream. That stream is a magic cookie that can be used

to recover the original interface from any apartment. And since it’s a stream of bytes, you

have any number of ways of sharing those bytes with another thread: You could save them in

a global variable, you could write them to a named pipe, or you could print them on a piece of

paper, bury it in the ground, then come back and dig up the paper and OCR the digits.

Whatever the mechanism, you can pass the bytes to CoUnmarshalInterface (or its own

helper function CoGetInterfaceAndReleaseStream) and it will produce an object that you

can use.

But we’re going to look at what happens at an even lower level: The CoMarshalInterface

function is the one that generates the stream. In addition to the obvious parameters (the

stream to which to write the bytes, the interface being marshaled, and an interface pointer),

there are two somewhat more mysterious parameters: The destination context and the

marshal flags.

The destination context describes where you intend to unmarshal the object. Here are the

destination contexts in order of distance from the source:

https://devblogs.microsoft.com/oldnewthing/20220614-00/?p=106750
https://devblogs.microsoft.com/oldnewthing/20191202-00/?p=103171

2/3

Flag Meaning Group

MSHCTX_CROSSCTX Another context in the same apartment. Same-
process

MSHCTX_INPROC Another apartment in the same process.

MSHCTX_LOCAL Another process on the same computer

which can share memory with the source.

Same-
machine

MSHCTX_NOSHAREDMEM Another process on the same computer

which cannot share memory with the

source.

MSHCTX_DIFFERENT‐
MACHINE

Another computer. Cross-
machine

Marshaling across integrity levels would be a case where the source and destination

processes cannot share memory.

Although there are five different marshaling contexts, most marshaling code cares only about

which group they belong to: The same-process group (CROSSCTX and INPROC) the same-

machine group (LOCAL and NOSHAREDMEM) and the cross-machine group (DIFFERENT‐

MACHINE).

Meanwhile, the marshal flags describe how you intend to unmarshal the object.

Flag Number of times to unmarshal
Strong or weak
reference

MSHLFLAGS_NORMAL Exactly once. Strong

MSHLFLAGS_
TABLESTRONG

Any number of times (possibly
zero).

Strong

MSHLFLAGS_
TABLEWEAK

Any number of times (possibly
zero).

Weak

The first case is called “normal” because it is the most common case of marshaling: You have

a single reference that you want to transfer to another apartment. We’ll see that knowing in

advance that this is how you intend to marshal the object interface allows for some

optimizations.

The last two cases are for where the object can be unmarshaled any number of times

(possibly zero). They differ in whether the stream itself keeps the object alive.

The marshal flags control the usage pattern for managing the stream.

3/3

If you choose either of the “table” (reusable) marshaling flags, the sequence is

Call CoMarshalInterface to write the bytes to the stream.

Call CoUnmarshalInterface to produce an object from the stream. Repeat this as

many times as you like, or skip it entirely.

Call CoReleaseMarshalData to signal that you are not going to be unmarshaling from

the stream any more.

The difference between the two “table” versions is whether the stream itself keeps the object

alive. If you choose a weak reference, then it is your responsibility not to call CoUnmarshal‐

Interface once the object has been destroyed. (Typically, you accomplish this by ensuring

that the stream’s lifetime is encompassed by the object’s lifetime.)

If you choose “normal” (one-time) marshaling, the sequence is

Call CoMarshalInterface to write the bytes to the stream.

Either

Call CoUnmarshalInterface to produce an object from the stream, or

Call CoReleaseMarshalData to abandon the operation.

In the case of “normal” marshaling, once you call CoUnmarshalInterface or CoRelease‐

MarshalData , the stream can no longer be used further. Conceptually, you can imagine that

calling CoUnmarshalInterface “normal” marshaling is like “table strong” marshaling, with

the added feature that the CoUnmarshalInterface implicitly performs a CoRelease‐

MarshalData when it’s done.

Next time, we’ll start looking at the mechanics of how COM marshaling is performed.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

