
1/2

June 9, 2022

How can I wait more than 30 seconds for a delay-
rendered clipboard format to become rendered?

devblogs.microsoft.com/oldnewthing/20220609-00

Raymond Chen

Last time, we saw that the system will wait up to 30 seconds for a clipboard owner to produce

delay-rendered data. But what if you want to extend this timeout?

The timeout itself is embedded in the clipboard manager and is not configurable. Thirty

seconds is the longest the clipboard manager will wait for the clipboard data to be rendered.

But that doesn’t mean that’s the longest you will wait.

Recall that the WM_RENDERFORMAT message handler will call SetClipboardData when it’s

done, hoping that the clipboard is still open by the original code that requested the data.

So you just need to keep the clipboard open long enough for the clipboard owner to finish

rendering the data format and calling SetClipboardData .

But how do you know that the clipboard owner has finished rendering the data format?

One idea is to poll by calling GetClipboardSequenceNumber until the sequence number

changes, indicating that somebody (presumably the clipboard owner) called SetClipboard‐

Data . This is unsatisfying because (1) it’s polling, and (2) if an error occurs which prevents

the clipboard owner from producing the data, you’re just going to be polling forever, unless

you create your own timeout.

I have another idea: Call GetClipboardOwner to obtain the handle of the clipboard owner.

This is the window that is busy trying to generate the clipboard data. Send this window a

harmless message like WM_NULL . The purpose is not to get a meaningful reply to the

message; the purpose is to know “Hey, this window is responding to messages again!”

The theory here is that if the window is not responding to messages, then that means that it is

still busy producing the data to be put onto the clipboard. Once it starts responding, then the

delay-rendering has completed.

https://devblogs.microsoft.com/oldnewthing/20220609-00/?p=106731
https://devblogs.microsoft.com/oldnewthing/20220608-00/?p=106727
https://devblogs.microsoft.com/oldnewthing/20121224-00/?p=5763

2/2

This theory holds up if the work is being done by the thread that owns the clipboard owner

window. However, if the clipboard owner window is delegating the work to another thread,

then this mechanism will report that the clipboard owner processed the WM_NULL message,

because threads can process inbound sent messages while waiting for an outbound sent

message to return.

But hey, it’s better than nothing.

if (OpenClipboard(hwnd)) {

 if (IsClipboardFormatAvailable(format)) {

 auto data = GetClipboardData(format);

 if (!data) {

 auto owner = GetClipboardOwner();

 SendMessage(owner, WM_NULL, 0, 0);

 data = GetClipboardData(format);

 }

 if (data) {

 // yay, we have clipboard data

 }

 }

 CloseClipboard();

}

After opening the clipboard, we check whether our desired format is available. If so, we ask

for it. If that request failed, then we send the clipboard owner a WM_NULL message to wait

for it to finish generating the format, and then try a second time. If that second try also fails,

then we just give up.

Of course, instead of sending the WM_NULL message with SendMessage , you can use

SendMessageTimeout to apply your own custom timeout. If the SendMessageTimeout of

WM_NULL fails, then you can probably skip calling GetClipboardData a second time.

The thread is probably still busy processing the original request. There’s an off chance that

the thread completed the original request but became hung on something else in the

meantime. I don’t consider this off chance worth the effort to work around. The whole thing

is just a workaround anyway.

It turns out that if you go back to the customer’s original problem, none of these

workarounds are needed anyway. We’ll look at a better solution next time. </P.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

