
1/6

June 1, 2022

The case of the COM reference that suddenly went bad in
the middle of a coroutine

devblogs.microsoft.com/oldnewthing/20220601-00

Raymond Chen

A customer reported a crash in a coroutine and needed help understanding it.

Here’s the crash:

contoso!winrt::impl::consume_Contoso_IWidgetOptions<winrt::Contoso::IWidgetOptions>::
Name+0x15:

00007ff8`fa6c77e1 mov rax,qword ptr [rcx] ds:00000000`00000000=????????????????

And the stack trace:

contoso!winrt::impl::consume_Contoso_IWidgetOptions<winrt::Contoso::IWidgetOptions>::
Name+0x15

contoso!winrt::Contoso::implementation::Widget::CreateAsync$_ResumeCoro$1+0xfe

contoso!winrt::Contoso::implementation::Widget::CreateAsync$_InitCoro$2+0x95

contoso!winrt::Contoso::implementation::Widget::CreateAsync+0x63

contoso!winrt::Contoso::implementation::Gadget::CreateWidgetAsync+0x7e

contoso!winrt::impl::produce<winrt::Contoso::implementation::Gadget,winrt::Contoso::
IGadget>::CreateWidgetAsync+0x35

litware!winrt::impl::consume_Contoso_Gadget<winrt::Contoso::Gadget>::
CreateWidgetAsync+0x47

litware!winrt::LitWare::implementation::GadgetViewer::
CreateWidgetsAsync$_ResumeCoro$2+0x343

litware!std::experimental::coroutine_handle<void>::resume+0xc

litware!std::experimental::coroutine_handle<void>::operator()+0xc

litware!winrt::impl::resume_background_callback+0x10

ntdll!TppSimplepExecuteCallback+0xa3

ntdll!TppWorkerThread+0x686

kernel32!BaseThreadInitThunk+0x10

ntdll!RtlUserThreadStart+0x2b

This is crashing inside the C++/WinRT projection, which you can infer because we crashed

inside a consume_ function. The consume_ functions are provided by the C++/WinRT

library to convert your C++/WinRT calls into low-level ABI calls. So something happened

inside that projection.

Here’s the consume function up to the point of the crash:

https://devblogs.microsoft.com/oldnewthing/20220601-00/?p=106700

2/6

 push rbx

 sub rsp,20h

 mov rcx,qword ptr [rcx] ; get the raw pointer from the IWidgetOptions

 and qword ptr [rsp+30h],0 ; pre-null the output parameter

 mov rbx,rdx

 mov rax,qword ptr [rcx] ; Load the vtable

The problem it seems is that the this parameter to IWidgetOptions::Name() is a COM

wrapper around a null pointer.

We are called from _InitCoro , which runs the initial synchronous portion, so we are still in

the synchronous portion of the coroutine. That’s nice, because it means that the caller is still

on the stack:

IAsyncOperation<Widget> Widget::CreateAsync(const WidgetOptions& options)

{

 auto name = options.Name();

Let’s see what we got as the options :

0:018> .frame 3

03 000000bb`dccff630 00007ff8`fa6c7b32 contoso!Widget::CreateAsync+0x63

0:018> dv

 options = 0x000000bb`dccff978

0:018> ?? options

struct winrt::Contoso::IWidgetOptions * 0x000000bb`dccff978

 +0x000 m_ptr : (null)

Yes indeed, the options is null. That’s why we crash trying to call a method on it.

The caller of Widget::CreateAsync is Gadget::CreateWidgetAsync :

IAsyncOperation<Widget> Gadget::CreateWidgetAsync()

{

 return Widget::CreateAsync(m_options);

}

The customer suspected that this function was incorrectly implemented. Shouldn’t it be this?

IAsyncOperation<Widget> Gadget::CreateWidgetAsync()

{

 co_return co_await Widget::CreateAsync(m_options);

}

“The immediate return might be losing some necessary coroutine frame lifetime, so that

when GadgetViewer::CreateWidgetsAsync completes, it’s operating on already-freed

memory. However, I’m not confident in this analysis.”

3/6

The function is fine. While it’s true that the common way of producing a IAsync‐

Operation<Widget> is to autogenerate one from a coroutine, it is also perfectly legal to just

create one by other means and just return it.

Let’s try to walk back up the stack to find out what the m_options were that we thought we

were passing in.

0:018> .frame 4

04 000000bb`dccff930 00007ff8`fa6c7a55 contoso!winrt::Contoso::implementation::
Gadget::CreateWidgetAsync+0x7e

0:018> dv

 this = <value unavailable>

Rats, the this pointer got optimized out. Keep going.

0:018> .frame 5

05 000000bb`dccff970 00007ff8`be19b2ff contoso!winrt::impl::produce<winrt::Contoso::
implementation::Gadget,winrt::Contoso::IGadget>::CreateWidgetAsync+0x35

0:018> dv

 this = <value unavailable>

 operation = 0x000000bb`dccff9d0

0:018> .frame 6

06 000000bb`dccff9a0 00007ff8`be109963 litware!winrt::impl::
consume_Contoso_Gadget<winrt::Contoso::Gadget>::CreateWidgetAsync+0x47

0:018> dv

 this = <value unavailable>

 operation = 0x00000000`00000000

0:018> .frame 7

07 000000bb`dccff9f0 00007ff8`be0d4b40 litware!winrt::LitWare::implementation::
GadgetViewer::CreateWidgetsAsync$_ResumeCoro$2+0x343

0:018> dv

 <coro_frame_ptr> = 0x00000276`15223b00

 strongThis = struct winrt::com_ptr<winrt::LitWare::implementation::
GadgetViewer>

We had to chase all the way back to GadgetViewer::CreateWidgetsAsync before we got a

foothold into the thing that will lead us to the options . Now we can start working our way

back in.

The GadgetViewer::CreateWidgetsAsync coroutine looks like this:

4/6

IAsyncOperation<IVectorView<MenuItem>> GadgetViewer::CreateWidgetsAsync()

{

 ...

 const auto strongThis{ get_strong() };

 co_await winrt::resume_background();

 std::vector<winrt::Contoso::Widget> widgets;

 if (const auto widget1 = co_await m_gadget.CreateWidgetAsync())

 {

 ...

Aha, so the outbound call to CreateWidgetAsync is made on the GadgetViewer ‘s

m_gadget . Follow the call:

0:018> ?? strongThis

struct winrt::com_ptr<winrt::Contoso::implementation::GadgetViewer>

 +0x000 m_ptr : 0x00000276`184121f0 winrt::Contoso::implementation::
GadgetViewer

0:018> ??((winrt::Contoso::implementation::GadgetViewer*) 0x00000276`184121f0)-
>m_gadget

struct winrt::Contoso::Gadget

 +0x000 m_ptr : 0x00000276`0f68d4e0 winrt::impl::abi<winrt::Windows::
Foundation::IUnknown,void>::type

Okay, we’ve found the m_gadget . Now to the options.

0:018> dt contoso!winrt::Contoso::implementation::Gadget

 +0x010 vtable : winrt::impl::produce<winrt::Contoso::implementation::
Gadget,winrt::Contoso::IGadget>

 +0x000 __VFN_table : Ptr64

 +0x008 m_references : std::atomic<unsigned __int64>

 +0x018 m_options : winrt::Contoso::WidgetOptions

 +0x020 m_source : winrt::Contoso::GadgetSource

 +0x028 m_home : std::basic_string<wchar_t,std::char_traits<wchar_t>,
std::allocator<wchar_t> >

We see that the vtable for the producer of IGadget is at offset 0x010 , so we subtract that

amount from our winrt::Contoso::Gadget pointer to get a pointer to the

implementation.

5/6

0:018> ?? ((contoso!winrt::Contoso::implementation::Gadget*)(0x00000276`0f68d4e0-
0x10))

struct winrt::Contoso::implementation::Gadget * 0x00000276`0f68d4d0

 +0x010 vtable : winrt::impl::produce<winrt::Contoso::implementation::
Gadget,winrt::Contoso::IGadget>

 +0x000 __VFN_table : 0x00007ff8`fa6df2e8

 +0x008 m_references : std::atomic<unsigned __int64>

 +0x018 m_options : winrt::Contoso::WidgetOptions

 +0x020 m_source : winrt::Contoso::GadgetSource

 +0x028 m_home : std::basic_string<wchar_t,std::char_traits<wchar_t>,
std::allocator<wchar_t> >

0:018> ?? &((contoso!winrt::Contoso::implementation::Gadget*)(0x00000276`0f68d4e0-
0x10))->m_options

struct winrt::Contoso::WidgetOptions * 0x00000276`0f68d4e8

 +0x000 m_ptr : 0x00000276`152f6270 winrt::impl::abi<winrt::Windows::
Foundation::IUnknown,void>::type

The address of this m_options is 0x00000276`0f68d4e8 , which is not the same as the

address that was passed to Widget::CreateAsync :

0:018> .frame 3

03 000000bb`dccff630 00007ff8`fa6c7b32 contoso!Widget::CreateAsync+0x63

0:018> dv

 options = 0x000000bb`dccff978

What happened? How did the address of a variable change?

Studying the code in the GadgetViewer that uses the m_gadget member variable, we see

that the member variable is used from both the foreground thread as well as from a

background thread:

// Property setter: Set the "Gadget" property of the GadgetViewer

void GadgetViewer::Gadget(winrt::Contoso::Gadget const& value)

{

 VerifyUIThread();

 if (m_gadget != value)

 {

 m_gadget = value;

 ...

 }

}

Recall that one of the principles of debugging somebody else’s code is to assume that the code

is mostly correct. The problem is likely in a small detail, an edge case, or a peculiar

combination of factors. After all, if the problem was in a common case, they probably

wouldn’t have had to ask an outsider for help.

https://devblogs.microsoft.com/oldnewthing/20070423-00/?p=27163

6/6

The VerifyUIThread call tells us that the expectation is that the gadget is changed only

from the UI thread. But there is no synchronization to protect access to this variable from

multiple threads, even though we are accessing it from a background thread:

IAsyncOperation<IVectorView<MenuItem>> GadgetViewer::CreateWidgetsAsync()

{

 ...

 const auto strongThis{ get_strong() };

 co_await winrt::resume_background(); // ← hop to background thread

 std::vector<winrt::Contoso::Widget> widgets;

 if (const auto widget1 = co_await m_gadget.CreateWidgetAsync())

 {

 ...

What may have happened is that while CreateWidgetsAsync was using m_gadget on the

background thread, the foreground thread changed the m_gadget , causing the old gadget

(and its m_options) to be destructed while the background thread was still using it.

The customer provided some history: As originally written, the GadgetViewer accessed the

m_gadget only from the foreground thread, but a subsequent change moved some of the

work to a background thread, and that introduced concurrency into code that was written on

the assumption that there was no concurrency.

One possible solution is for GadgetViewer::CreateWidgetsAsync to capture the member

variables it intends to use (the m_gadget , in this case, but possibly other member variables

not seen here) before going to the background thread, and operating entirely on the captured

variables. It means that when you call CreateWidgetsAsync , you get the widgets associated

with the gadget that you were viewing at the point you called CreateWidgetsAsync , even if

you changed the gadget while the CreateWidgetsAsync was still working.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

