
1/4

May 17, 2022

Writing a sort comparison function, part 1: basics
devblogs.microsoft.com/oldnewthing/20220517-00

Raymond Chen

I’ve noted in the past that a sort comparison function must follow certain rules, and if you

violate those rules, very strange things happen. So what are some patterns for writing sort

comparison functions that don’t break the rules?

Most of the time, sorting can be reduced to key comparison:¹ From each element being

sorted, you generate a sort key, and those sort keys are compared against each other.²

Related reading: Sorting by indices, part 2: The Schwartzian transform.

The easiest way to write a sort comparison function is to generate the sort keys, and then

compare the keys.

// Assume some function called "key" that produces

// the sort key from an object.

// three-way comparison

int compare_3way_for_sorting(T const& a, T const& b)

{

 int a_key = key(a);

 ant b_key = key(b);

 if (a_key < b_key) return -1;

 if (a_key > b_key) return +1;

 return 0;

}

// less-than comparison

bool compare_less_for_sorting(T const& a, T const& b)

{

 return key(a) < key(b);

}

This reduces the problem to writing a sort key. Here’s an example:

https://devblogs.microsoft.com/oldnewthing/20220517-00/?p=106664
https://devblogs.microsoft.com/oldnewthing/20031023-00/?p=42063
https://devblogs.microsoft.com/oldnewthing/20090508-00/?p=18313
https://devblogs.microsoft.com/oldnewthing/20170106-00/?p=95135

2/4

// Key generator: Sort by total cost (price + tax)

auto key(T const& t)

{

 return t.price + t.tax;

}

For a multi-level sort, you can return a std::pair or std::tuple with the most

significant key as the first element.

// Key generator: Sort by length, then by width

auto key(T const& t)

{

 return std::make_pair(t.length, t.width);

}

// Key generator: Sort by length, then by width,

// then by weight

auto key(T const& t)

{

 return std::make_tuple(t.size, t.width, t.weight);

}

The make_tuple function copies its arguments, which you may want to avoid if the

members are expensive to copy. One solution is to wrap the member in a std::ref :

// Key generator: Sort by name, then age

auto key(T const& t)

{

 return std::make_tuple(std::ref(t.name), t.age);

}

Another is to use std::forward_as_tuple to make everything a reference.

// Key generator: Sort by name, then age

auto key(T const& t)

{

 return std::forward_as_tuple(t.name, t.age);

}

The std::forward_as_tuple approach is dangerous, however, if a portion of the key

comes from a temporary:

// Key generator: Sort by name, then area

auto key(T const& t)

{

 // Don't do this!

 return std::forward_as_tuple(t.name, t.height * t.width);

}

3/4

We saw some time ago that std::forward_as_tuple captures everything as a reference, so

it will capture the second component as a reference to a temporary integer, and that

temporary integer will be destroyed at the end of the full expression, leaving the reference

dangling.

If you inline the call to std::forward_as_tuple into compare_less_for_sorting ,

then the temporary will survive past the comparison:

bool compare_less_for_sorting(T const& a, T const& b)

{

 return std::forward_as_tuple(a.name, a.height * a.width) <

 return std::forward_as_tuple(b.name, b.height * b.width);

}

But this is itself a violation of the principle of Don’t Repeat Yourself (DRY). So I guess that

means make_tuple with judicious use of std::ref is the way to go.

To avoid making the key generator visible outside the scope of the comparison function, you

can declare it as a local captureless lambda:

bool compare_less_for_sorting(T const& a, T const& b)

{

 auto key = [](auto&& t) {

 return std::make_tuple(std::ref(t.name), t.height * t.width);

 };

 return key(a) < key(b);

}

And then you can lambda-ize the comparison function, too:

void f(std::vector<T>& v)

{

 auto key = [](auto&& t) {

 return std::make_tuple(std::ref(t.name), t.height * t.width);

 };

 std::sort(v.begin(), v.end(), [key](auto&& t, auto&& b) {

 return key(a) < key(b);

 });

}

Note that even if you limit your use of forward_as_tuple to references to members of

the objects being sorted, you have to consume the forwarded tuple immediately. Sorting may

move the object, and once that happens, your forwarded references become invalid.

Next time, we’ll look at what we could do if one of the sort keys is expensive to calculate.

¹ And in fact, if your sorting does not reduce to key comparison, then it’s a clue that your sort

function might not be valid.

https://devblogs.microsoft.com/oldnewthing/20220428-00/?p=106540

4/4

² Indeed, in the Python programming language, this is the only way to sort. The ability to

provide a custom comparison function was removed in Python 3. Instead, you pass a function

that produces a sort key, and the sort occurs on the keys.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

