
1/3

May 12, 2022

Should I pay attention to the warning that I’m
std::move‘ing from a trivial type? Part 1

devblogs.microsoft.com/oldnewthing/20220512-00

Raymond Chen

Say you have a class that is trivial.

struct widget_id

{

 int value;

};

and you decide that you want to std::move it around.

widget_id id = get_widget_id();

widget widget = find_widget_by_id(std::move(id));

You are using std::move because you want to be prepared for the possibility that the

widget_id might later be changed to something like

struct widget_id

{

 std::string value;

}

In that case, you want to use a std::move to avoid a copy.

But using std::move on the original integer-based widget_id generates a warning:

std::move of the variable id of the trivially-copyable type widget_id has no effect.

What is this warning trying to tell you, and should you care?

The language requires merely that a moved-from object be in a legal (albeit unspecified)

state. However, many classes go beyond the bare minimum and define their moved-from

state. For example, std::unique_ptr specifies that if you move out of a unique pointer, the

source is left empty. More generally, all RAII types fall into this category, because moving out

https://devblogs.microsoft.com/oldnewthing/20220512-00/?p=106651
https://clang.llvm.org/extra/clang-tidy/checks/performance-move-const-arg.html

2/3

of an RAII type transfers the responsibility for the resource to the moved-to object. And most

of these RAII types provide a way to inspect whether the RAII wrapper has been absolved of

any responsibility.

And that’s where the warning comes in.

Consider this helper function:

bool is_empty(widget_id const& id)

{

 return id.value == 0;

 // -or-

 return id.value.size() == 0;

}

This tells you that the widget_id doesn’t actually contain an id after all. Somebody who

expects the widget_id to be an RAII-style type might do this:

// Remember to add power to this widget, if possible

widget_id id = get_widget_id();

if (wants_power_early()) {

 add_widget_power(std::move(id));

}

...

if (is_empty(id)) {

 // Nobody added power yet, let's do it now.

 add_widget_power(std::move(id));

}

This type of mistake is much more likely if the emptiness check is a member of the

widget_id itself, either as a named member function or as a boolean conversion operator.

struct widget_id

{

 int value;

 bool is_empty() const { return value == 0; }

 operator bool() const { return value != 0; }

};

Then that last check would be

if (!id.is_empty()) {

or the even more natural-looking

if (id) {

3/3

Okay, so maybe you know that you’re not operating on an RAII type, and that you know that

the std::move may not actually move anything. Is there some way to avoid having to

disable the warning at every single place you do the std::move ?

One way is to make your type no longer trivial. Probably the simplest way is to give it a user-

defined destructor that is equivalent to the trivial destructor.

struct widget_id

{

 int value;

 ~widget_id() { } // no longer a trivial type

};

On the other hand, making the type no longer trivial is likely to have unintended cascade

effects seeing as triviality affects many other things: If you make a type non-trivial, then you

lose the ability to do things like use memcpy to copy instances of the type, or use it as a

buffer for I/O operations.

Another option is to route the call through a helper, and then annotate the helper.

template<typename T>

constexpr decltype(auto) move_allow_trivial(T&& t) noexcept

{

 return std::move(t); // NOLINT

}

If you don’t mind that you’re moving a trivial type, you can call this helper instead of calling

std::move directly.

There’s another case for moving from a trivial type. We’ll look at it next time.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

