
1/5

May 5, 2022

On awaiting a task with a timeout in C#
devblogs.microsoft.com/oldnewthing/20220505-00

Raymond Chen

Say you have an awaitable object, and you want to await it, but with a timeout. How would

you build that?

What you can do is use a when_any -like function in combination with a timeout coroutine.

For C# this would be something like

await Task.WhenAny(

 DoSomethingAsync(),

 Task.Delay(TimeSpan.FromSeconds(1)));

The WhenAny method completes as soon as any of the passed-in tasks completes. It returns

the winner, which you can use to detect whether the operation completed or timed out:

var somethingTask = DoSomethingAsync();

var winner = await Task.WhenAny(

 somethingTask,

 Task.Delay(TimeSpan.FromSeconds(1)));

if (winner == somethingTask)

{

 // hooray it worked

}

else

{

 // sad, it timed out

}

If the operation produced a result, you’ll have to create a timeout task that completes with

the same result type, even if you never actually use that result.

https://devblogs.microsoft.com/oldnewthing/20220505-00/?p=106585

2/5

static async Task<T>

DelayedDummyResultTask<T>(TimeSpan delay)

{

 await Task.Delay(delay);

 return default(T);

}

var somethingTask = GetSomethingAsync();

var winner = await Task.WhenAny(

 somethingTask,

 DelayedDummyResultTask<Something>(TimeSpan.FromSeconds(1)));

if (winner == somethingTask)

{

 // hooray it worked

}

else

{

 // sad, it timed out

}

The purpose of the DelayedDummyResultTask is not to produce a result, but rather to

provide a delay.

We can wrap this up in a helper:

static async Task<(bool, Task<T>)>

TaskWithTimeout<T>(

 Task<T> task,

 TimeSpan timeout)

{

 var winner = await Task.WhenAny(

 task, DelayedDummyResultTask<T>(timeout));

 return (winner == task, winner);

}

var (succeeded, task) = await TaskWithTimeout(

 GetProgramAsync(), TimeSpan.FromSeconds(1));

if (succeeded) {

 UseIt(task.Result);

} else {

 // Timed out

}

The usage pattern here is still rather clunky, though.

One common pattern is to call the method, but abandon it and return some fallback value

instead (typically false or null):

3/5

static async Task<T>

DelayedResultTask<T>(TimeSpan delay, T result = default(T))

{

 await Task.Delay(delay);

 return result;

}

static async Task<T>

TaskWithTimeoutAndFallback<T>(

 Task<T> task,

 TimeSpan timeout,

 T fallback = default(T))

{

 return (await Task.WhenAny(

 task, DelayedResultTask<T>(timeout, fallback))).Result;

}

This time, our delayed dummy result is no longer a dummy result. If the task times out, then

the result of Task.WhenAny is the timeout task, and its result is what becomes the result of

the TaskWithTimeoutAndFallback .

Another way of writing the above would be

static async Task<T>

TaskWithTimeoutAndFallback<T>(

 Task<T> task,

 TimeSpan timeout,

 T fallback = default(T))

{

 return await await Task.WhenAny(

 task, DelayedResultTask<T>(timeout, fallback));

}

which you might choose if only because it give you a rare opportunity to write await

await .

You could call the function like this:

var something = TaskWithTimeoutAndFallback(

 GetSomethingAsync(), TimeSpan.FromSeconds(1));

The value in something is the result of GetSomethingAsync() or null .

It might be that the fallback result is expensive to calculate. For example, it GetSomething‐

Async times out, maybe you want to query some alternate database to get the fallback value.

So maybe we could have a version where the fallback value is generated lazily.

4/5

static async Task<T>

DelayedResultTask<T>(TimeSpan delay, Func<T> fallbackMaker)

{

 await Task.Delay(delay);

 return fallbackMaker();

}

static async Task<T>

TaskWithTimeoutAndFallback<T>(

 Task<T> task,

 TimeSpan timeout,

 Func<T> fallbackMaker)

{

 return await await Task.WhenAny(

 task, DelayedResultTask<T>(timeout, fallbackMaker));

}

var something = TaskWithTimeoutAndFallback(

 GetSomethingAsync(), TimeSpan.FromSeconds(1),

 () => LookupSomethingFromDatabase());

As a special case, you might want to raise a TimeoutException instead of a fallback value.

You could do that by passing a lambda that just throws the TimeoutException instead of

producing a fallback value.

var something = TaskWithTimeoutAndFallback(

 GetSomethingAsync(), TimeSpan.FromSeconds(1),

 () => throw TimeoutException());

This is probably a common enough pattern that we could provide a special helper for it.

static async Task<T>

DelayedTimeoutExceptionTask<T>(TimeSpan delay)

{

 await Task.Delay(delay);

 throw new TimeoutException();

}

static async Task<T>

TaskWithTimeoutAndException<T>(

 Task<T> task,

 TimeSpan timeout)

{

 return await await Task.WhenAny(

 task, DelayedTimeoutExceptionTask<T>(timeout));

}

// throws TimeoutException on timeout

var something = TaskWithTimeoutAndFallback(

 GetSomethingAsync(), TimeSpan.FromSeconds(1));

5/5

Note that in all of this, the task that timed out continues to run to completion. It’s just that

we’re not paying attention to it any more. If you want to cancel the abandoned task, you need

to hook up a task cancellation source when you create it, assuming that’s even possible.

In the special case where the Task came from a Windows Runtime asynchronous action or

operation, you can hook up the cancellation token yourself:

var source = new CancellationTokenSource();

var something = TaskWithTimeoutAndFallback(

 o.GetSomethingAsync().AsTask(source.token),

 TimeSpan.FromSeconds(1));

source.Cancel();

source.Dispose();

// see what's in the "something"

If you prefer to exit with an exception, then you need to cancel the operation in your timeout

handler:

var source = new CancellationTokenSource();

try {

 var something = TaskWithTimeoutAndException(

 o.GetSomethingAsync().AsTask(source.token),

 TimeSpan.FromSeconds(1));

} catch (TimeoutException) {

 source.Cancel();

} finally {

 source.Dispose();

}

That was a very long discussion, and I haven’t even gotten to the original purpose of writing

about task cancellation with timeouts, which is to talk about how to do all of this in

C++/WinRT. I’m tired, so we’ll pick this up next time.

Bonus reading: Crafting a Task.TimeoutAfter Method.

Raymond Chen

Follow

https://devblogs.microsoft.com/pfxteam/crafting-a-task-timeoutafter-method/
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

