
1/6

April 22, 2022

Trying to create a factory that remembers the parameters
to pass to another method

devblogs.microsoft.com/oldnewthing/20220422-00

Raymond Chen

Continuing from using maker functions to work around limitations of class template

argument deduction, let’s suppose you want to create a generic factory. This sounds like an

arbitrary academic exercise, but this stemmed from a real problem. This has practical use,

say, if you have a common object and need to generate various factories that produce

preconfigured objects.

// Imaginary code that doesn't even compile.

template<typename T, typename...Args>

struct generic_factory

{

 template<typename... Actuals>

 generic_factory(Actuals&&... args) : /* something */ { }

 auto make()

 {

 return std::make_unique<T>(args...);

 }

};

template<typename T, typename... Args>

auto make_generic_factory(Args&&... args)

{

 return generic_factory<T, std::decay_t<Args>...>

 (std::forward<Args>(args)...);

}

The idea is that you create the generic factory by telling it what type you want to create (T)

and the arguments to pass to the constructor (args...). You can then call the make

method on the generic factory, and out comes a new T object, constructed with exactly

those parameters.

The question is how to convert this sketch into a real class.

https://devblogs.microsoft.com/oldnewthing/20220422-00/?p=106516
https://devblogs.microsoft.com/oldnewthing/20220420-00/?p=106506

2/6

A handy place to store a bunch of values is a tuple, and getting the values out of a tuple to

pass them as parameters can be done with std::apply : While we’re at it, we’ll move the

std::decay into the generic_factory , to make things a little less awkward.

// Compiles but doesn't work.

template<typename T, typename...Args>

struct generic_factory

{

 using Tuple = std::tuple<std::decay_t<Args>...>;

 Tuple captured;

 generic_factory(Args&&... args) :

 captured(std::forward<Args>(args)...) {}

 auto make()

 {

 return std::apply(std::make_unique<T>, captured);

 }

};

template<typename T, typename...Args>

auto make_generic_factory(Args&&... args)

{

 return generic_factory<T, Args...>(std::forward<Args>(args)...);

}

Now, it looks like we’re reinventing std::bind , and yes, that’s very similar what we’re

doing. We don’t have the special rules about std::ref and std::cref that std::bind

has, nor do our parameters decay, nor do we support placeholders. But one annoying thing

about std::bind is that the return type has no name, so it’s hard to store it in a variable for

later use. (I guess what you usually do is immediately put it inside a std::function , but

that comes with its own issues.)

And it turns out that std::bind has the same problem that our make does:

 // with std::bind

 auto make = std::bind(std::make_unique<T>, args...);

 make();

 // with std::apply

 return std::apply(std::make_unique<T>, captured);

Both of these fail with some horrible error message:

3/6

// std::bind

Failed to specialize function template 'unknown-type std::_Binder<std::_Unforced,
std::unique_ptr<T, std::default_delete<T>> (__cdecl &)(void),T>::operator ()(_Unbound
&&...) noexcept() const'

// std::apply

'std::invoke': no matching overloaded function found

see reference to function template instantiation 'decltype(auto)
std::_Apply_impl<std::unique_ptr<T, std::default_delete<T>> (__cdecl &)
(void),std::tuple<Args...>&,0>(std::unique_ptr<T,std::default_delete<T>> (__cdecl &)
(void), std::tuple<int> &, std::integer_sequence<size_t, 0>)' being compiled

I find it interesting that calling std::bind does compile. However, it produces an object

that cannot be used for anything: Trying to invoke the bound call generates the compiler

error.

These calls fail because the first parameter to std::bind and std::apply is a callable.

No overloading or template type inference is happening here: In order for those to occur, the

expression needs to be cast to a specific type, or there need to be parameters to force a

resolution to occur. But std::bind and std::apply accept their first parameters as an

arbitrary type, so there is no coersion to any particular parameter list.

I mean, you and I know that the parameter is given by the remaining arguments, but that’s

only because we understand the semantics of what std::bind and std::apply are going

to do, namely, combine the first parameter with the other parameters to create a function

call. But the compiler doesn’t know that. It just sees a bunch of parameters and doesn’t know

that they’re going to be combined at some point in the future.

This means that when we write std::make_unique<T> , we are specifying the version of

make_unique that takes no parameters. The parameters to make_unique correspond to

the second and subsequent template type paramters, for which we passed none.

Since the compiler doesn’t have enough information to infer the extra parameters, we have to

specify them explicitly:

 // with std::bind

 auto make = std::bind(std::make_unique<T, Args...>, args...);

 make();

 // with std::apply

 return std::apply(std::make_unique<T, Args...>, captured);

Unfortunately, this still doesn’t work. The confusing error message this time is

4/6

// std::bind

'operator __surrogate_func': no matching overloaded function found

Failed to specialize function template 'unknown-type std::_Binder<std::_Unforced,
std::unique_ptr<T, std::default_delete<T>> (__cdecl &)(void), T>::operator ()
(_Unbound &&...) noexcept() const'

// std::apply

'std::invoke': no matching overloaded function found

see reference to function template instantiation 'decltype(auto)
std::_Apply_impl<std::unique_ptr<T, std::default_delete<T>>(__cdecl &)(int &&),
std::tuple<int>&, 0>(std::unique_ptr<T, std::default_delete<T>> (__cdecl &)(int &&),
std::tuple<int>, std::integer_sequence<size_t, 0>)' being compiled

Buried in all that error message is the interesting part:

(__cdecl &)(int &&)

The specialization of make_unique we are calling wants an int&& . Why does it want an

int&& ?

The corresponding parameter is an int&& because the declaration of make_unique uses

a universal reference:

template<typename T, typename... Args>

unique_ptr<T> make_unique(Args&&... args);

Since we explicitly passed Args = int , this makes the parameter list make_

unique(int&& args) . And that’s why the function wants an int&& .

Okay, so we need to pass an int&& . But what does std::apply actually pass?

The std::apply function passes std::get<N>(tuple) for each parameter. Since the

tuple we passed was an lvalue, std::get<N>(tuple) returns an lvalue reference to the

tuple element.

And that’s where the error is coming from. The function wants an rvalue reference to int ,

but we’re passing an lvalue reference.

Before we try to solve this problem, we need to understand what we are trying to do.

We want to capture the parameters to pass to make_unique , and each time someone calls

make , we want to call make_unique again with the same parameters. Therefore, we don’t

want to pass rvalue references to our tuple elements: The first call to make_unique would

be able to steal the resources from our captured parameters, leaving nothing for the the

second and subsequent calls.

5/6

Similarly, we don’t want to pass a straight lvalue reference, because that allows the T

constructor to mutate the parameter, which would mess up the captured parameters for the

second and subsequent calls.

What we really want to pass is a const lvalue reference. And we can make this easier to

enforce by making our captured member variable also const .

template<typename T, typename...Args>

struct generic_factory

{

 using Tuple = std::tuple<std::decay_t<Args>...>;

 Tuple const captured;

 generic_factory(Args&&... args) :

 captured(std::forward<Args>(args)...) {}

 auto make()

 {

 return std::apply(std::make_unique<T,

 std::decay_t<Args> const&...>, captured);

 }

};

template<typename T, typename...Args>

auto make_generic_factory(Args&&... args)

{

 return generic_factory<T, Args...>(std::forward<Args>(args)...);

}

A note of caution here: The parameters passed to make_generic_factory are captured

as-is. If constructing a T from them requires a parameter conversion, the conversion is

applied at the time the T is constructed, not at the time the parameters are captured.

Here’s an example:

struct widget

{

 widget(std::string const& name) : m_name(name) { }

 std::string m_name;

};

auto factory = make_generic_factory<widget>("bob");

The parameter captured by make_generic_factory is the string literal, not a

std::string . Each time you call make , the string literal is converted to a std::string ,

which is then passed to the widget constructor, and then when the constructor returns, the

temporary std::string is destructed. If you want to construct the std::string only

once, you’ll have to capture it as a std::string :

6/6

auto factory = make_generic_factory<widget>("bob"s);

This can get scary for some conversion constructors:

auto make_widget_factory(int id)

{

 char name[80];

 snprintf(name, 80, "item #%d", id);

 return make_generic_factory<widget>(name);

}

In this case, the captured parameter is the raw pointer to the stack buffer, which immediately

goes out of scope. When you call make() , that raw pointer is then passed to make_

unique , which will try to convert it to a std::string , but it’s too late. The raw pointer is

dangling.

Bonus chatter: A lambda would also do the trick. The make method becomes the

operator() :

template<typename T, typename...Args>

auto make_generic_factory(Args&&... args)

{

 return [captured = std::make_tuple(args...)]() {

 return std::apply(std::make_unique<T,

 std::decay_t<Args> const&...>, captured);

 };

}

C++20 adds the ability to capture a parameter pack into a lambda without having to hide it

inside a tuple:

template<typename T, typename...Args>

auto make_generic_factory(Args&&... args)

{

 return [...args = std::forward<Args>(args)]() {

 return std::make_unique<T>(args...);

 };

}

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

