
1/4

April 19, 2022

The Applesoft Compiler (TASC): We have the source
code, in a sense

devblogs.microsoft.com/oldnewthing/20220419-00

Raymond Chen

Back in the early 1980’s, the Apple][computer was taking the personal computing world by

storm, and Microsoft released a compiler for Applesoft BASIC. That compiler went by the

name TASC: The Applesoft Compiler.

TASC was written by one person in his dorm room while studying at MIT. Microsoft licensed

the product and hired the author, who spent the summer at the Northup building¹ polishing

the code.

As noted on page 61 of the manual:

TASC is a “two-pass” compiler, since it compiles in two major steps. PASS0 simply picks up
user inputs and sets up compilation parameters, so it is not really part of the actual compilation
process. The Applesoft program TASC runs PASS0.

PASS0 and PASS1 chain to PASS1 and PASS2, respectively. All three passes were written
largely in Applesoft, and TASC was used to compile itself.

Chaining refers to a program instructing the system to replace the current program in

memory with another program, but preserve the values of some or all variables. Chaining was

a common technique when your program got too large to fit into memory all at once, so you

broke it into multiple programs that each handed off control to each other.

Even if you hadn’t made it that deep into the manual, you could have figured out that TASC

was used to compile itself because TASC used its own runtime library.

Chaining was not a feature native to Applesoft BASIC. It was one of a handful of language

extension provided by TASC itself, through the use of magic comments that begin with an

exclamation point. This meant that once TASC development reached the point that it

required chaining, it could be run only in its compiled form. There was no way to bootstrap it

from the interpreter.

https://devblogs.microsoft.com/oldnewthing/20220419-00/?p=106496
https://archive.org/details/TASC_The_AppleSoft_Compiler_Manual/page/n33/mode/2up
https://en.wikipedia.org/wiki/Chain_loading

2/4

As the author added features, he kept hitting the Apple][‘s 48KB RAM limit and was forced

to delete all the comments from the code, and when that wasn’t enough, he resorted to

shortening all the important variable names to one character.

Such is the desperation of developing on a system with very tight memory constraints.

Everything was working smoothly, until the author returned to school for a semester. Upon

returning to Microsoft, he found that he no longer understood the code. He had a sprawling

compiler, with no comments, and unhelpful variable names.²

Yet somehow, he finished TASC, and it shipped.

If you dig through the TASC manual, you can find all sorts of wonderful implementation

details.

All of the real work happened in pass 1. This performed code generation and left placeholders

for references to other locations like branch targets or variables. Pass 2 consisted of resolving

these references and patching up the code. Even though Pass 1 had all the smarts and Pass 2

was just doing clerical work, it was Pass 2 that took the most time because it was I/O-bound,

and floppy disks are not speed demons when it comes to random access. Pass 2 was I/O-

bound not only because of the need to patch the object code, but also because the table of line

numbers was itself written to disk, there not being enough RAM to keep it in memory.

Pass 2 made a pass through the object code once for each variable, since the references to a

variable were threaded through the object code as a linked list, similar to how 16-bit

Windows threaded external references through the code instead of keeping a separate fixup

table. Your program has 100 variables? Then that’s 100 passes through the object code to

update references to 100 variables.

When the code generator needed to access a variable, it didn’t do so directly. The 6502 was

an 8-bit processor, so none of the variables fit into a register. You needed to call a function to

transfer the variable’s value to or from a common staging area.³ Your traditional code

generation went something like this:

https://devblogs.microsoft.com/oldnewthing/20060717-00/?p=30503

3/4

 ; BASIC code: X = A + B

 ; traditional code generation

 lda #address_of_a_lo

 ldy #address_of_a_hi

 call load_variable_to_accumulator

 lda #address_of_b_lo

 ldy #address_of_b_hi

 call load_variable_to_arg

 call add_arg_to_accumulator

 lda #address_of_x_lo

 ldy #address_of_x_hi

 call store_accumulator_to_variable

To save four bytes at each call site, the address-loading is factored out, and each variable gets

a dedicated entry point:

 ; revised code generation

 call load_variable_a_to_accumulator

 call load_variable_b_to_arg

 call add_arg_to_accumulator

 call store_accumulator_to_variable_x

 ...

 ; block of variable access functions

load_variable_a_to_accumulator:

 lda #address_of_a_lo

 ldy #address_of_a_hi

 jmp load_variable_to_accumulator

load_variable_b_to_arg:

 lda #address_of_b_lo

 ldy #address_of_b_hi

 jmp load_variable_to_arg

store_accumulator_to_variable_x:

 lda #address_of_x_lo

 ldy #address_of_x_hi

 jmp store_accumulator_to_variable

This is a net win if each variable is accessed several times, which is a pretty fair assumption.

To save code size further, the access function was itself parameterized on the type of access.

4/4

store_arg_to_variable_x:

 ldx #4

 .byte 0x2c ; swallow next two bytes

load_variable_x_to_arg:

 ldx #3

 .byte 0x2c ; swallow next two bytes

store_accumulator_to_variable_x:

 ldx #2

 .byte 0x2c ; swallow next two bytes

load_variable_x_to_accumulator:

 ldx #1

 lda #address_of_x_lo

 ldy #address_of_x_hi

 jmp do_something_with_variable ; uses value in X to decide what to do

We are using the trick of jumping into the middle of an instruction to provide multiple entry

points to a common block of code. The author of TASC was very proud of this optimization.

Related reading: Excuse me, has anybody seen the FOCAL interpreter?

¹ This is the same building that was next door to the restaurant that inspired an important

variable name in the 16-bit Windows kernel.

² Also, Applesoft BASIC didn’t have local variables. All variables were global. That certainly

didn’t help with understanding the code.

³ It has been said that when you write code for the 6502, you’re not so much writing code as

you are writing microcode. The CPU itself has only three 8-bit registers (A, X, and Y), and

only A can do arithmetic. Anything of more than ephemeral value must be stored in memory.

The real working space was the zero page. For example, you might decide that one region of

the zero page was the logical “accumulator”, and most of your time was spent transferring

values into or out of that accumulator, interspersed with occasionally performing arithmetic

on or testing the value in that accumulator.

Perhaps the most famous example of treating the 6502 as microcode is the SWEET16

interpreter, written by Steve Wozniak, which emulated a 16-register 16-bit virtual processor

in roughly 300 bytes of memory.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20220111-00/?p=106144
https://devblogs.microsoft.com/oldnewthing/20200616-00/?p=103869
https://devblogs.microsoft.com/oldnewthing/20200114-00/?p=103327
https://en.wikipedia.org/wiki/SWEET16
https://en.wikipedia.org/wiki/Steve_Wozniak
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

