
1/2

April 6, 2022

All Windows threadpool waits can now be handled by a
single thread

devblogs.microsoft.com/oldnewthing/20220406-00

Raymond Chen

I noted some time ago that creating a threadpool wait allows the threadpool to combine

multiple waits, so that each thread waits for nearly 64 objects. (It’s not quite 64 objects

because one of the objects is a special sentinel object that means “Stop waiting.”)

In the time since I wrote that article, the situation has gotten even better. Starting in

Windows 8, the registered waits are associated with a completion port, and a single thread

handles all the wait requests by waiting for completions.

We can see the new behavior in action with this simple program:

https://devblogs.microsoft.com/oldnewthing/20220406-00/?p=106434
https://devblogs.microsoft.com/oldnewthing/20081117-00/?p=20183


2/2

#include <windows.h>

#include <stdio.h>


int main()

{

   static LONG count = 0;

   HANDLE last = CreateEvent(nullptr, true, false, nullptr);


   HANDLE event = last;

   for (int i = 0; i < 10000; i++)

   {

       auto wait = CreateThreadpoolWait(

       [](auto, auto event, auto, auto)

       {

           InterlockedIncrement(&count);

           SetEvent(event);

       }, event, nullptr);

       event = CreateEvent(nullptr, true, false, nullptr);

       SetThreadpoolWait(wait, event, nullptr);

   }


   Sleep(10000);

   SetEvent(event);

   WaitForSingleObject(last, INFINITE);

   printf("%d events signaled\n", count);

   return 0;

}


This quick-and-dirty program creates 10,000 threadpool waits, each waiting on a different

event, and whose callback signals the next event, creating a chain of waits that eventually

lead to setting the event named last . Under the old rules, creating 10,000 threadpool waits

would result in around 10,000 ÷ 63 ≅ 232 threads to wait on all of those objects. But if you

break into the debugger during the Sleep() , you’ll see that there are just a few. And if you

set a breakpoint at the start of the main  function, you’ll see that only one of those threads

was created as a result of the threadpool waits; the others were pre-existing.

To prove that all of these waits really are waiting, we signal the most recent one, which sets

off a chain of SetEvent  calls, and wait for the last event to be set. We print the number of

events that were signaled (should be 10,000) and call it a day.

This is just a proof of concept to show the thread behavior, so I didn’t bother cleaning up the

waits or the handles.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

