
1/8

March 25, 2022

Behind C++/WinRT: How does C++/WinRT get the list of
implemented interfaces?

devblogs.microsoft.com/oldnewthing/20220325-00

Raymond Chen

Last time, we looked at how C++/WinRT decides which interfaces are implemented. The

is_interface type is just part of the larger template metaprogramming infrastructure

inside C++/WinRT.

Today, we’ll reverse-engineer the interface_list<...> template type, which holds a list

of interfaces inside the

template <typename...> struct interface_list;

template <>

struct interface_list<>

{

 template <typename T, typename Predicate>

 static constexpr void* find(const T*, const Predicate&) noexcept

 {

 return nullptr;

 }

};

The base case is an empty interface list. In that case, there are no interfaces, and any attempt

to find one always fails.

template <typename First, typename ... Rest>

struct interface_list<First, Rest...>

{

 template <typename T, typename Predicate>

 static constexpr void* find(const T* obj, const Predicate& pred) noexcept

 {

 if (pred.template test<First>())

 {

 return to_abi<First>(obj);

 }

 return interface_list<Rest...>::find(obj, pred);

 }

 using first_interface = First;

};

https://devblogs.microsoft.com/oldnewthing/20220325-00/?p=106384
https://devblogs.microsoft.com/oldnewthing/20220324-00/?p=106381

2/8

The recursive case is an interface list of at least one element. That element is called First ,

and is given the member type name first_interface for later extraction. The rest of the

elements are called Rest .

The interface_list<...> has a find method that looks for the first interface that

satisfies a given predicate. From the usage pattern, you can see that the expected pattern for

the predicate is

class Predicate

{

public:

 template<typename I> bool test() const noexcept

 {

 return "true" if the interface "I" passes the test

 }

};

You can infer this because

The test method must be public because we call it from outside the class.

We call the test<First>() method, so the template parameter is the interface to

test.

The return value is used by the if statement, so it should be a bool (or at least be

bool -like).

We invoke it on a const pred object, so the method must be const .

The containing function is noexcept so test() should be noexcept as well.

In the base case, there are no interfaces, so clearly there are no matches, so it just returns

nullptr .

In the recursive case, it asks the predicate to test the first interface. If so, the we return

to_abi<First>(obj) . Otherwise we call oureslves recursively to test the other interfaces.

Template metaprogramming traditionally involves a lot of recursion.¹

The next helper is this guy:

template <typename, typename> struct interface_list_append_impl;

template <typename... T, typename... U>

struct interface_list_append_impl<interface_list<T...>, interface_list<U...>>

{

 using type = interface_list<T..., U...>;

};

The interface_list_append_impl class appends two interface lists. It extracts the

interfaces from two interface lists (calling them T... and U...) and then creates a new

interface list called type whose interfaces are the concatenation of T... and U... .

3/8

To concatenate two interface lists, you would say

using result = interface_list_append_impl<list1, list2>::type;

Two patterns common to template metaprogramming are the “type” pattern and the “value”

pattern. You create a class whose job is to perform some template metaprogramming task

that produces a type or value. In order to express a type, you define a nested type called

type which is aliased to to the produced type. And to express a value, you define a static

const (or constexpr starting in C++11) member called value which has the produced

value.

The first complex operation on interface lists is filtering:

template <template <typename> class, typename...>

struct filter_impl;

This weird declaration says that filter_impl is a templated class whose first template

parameter is another template (which takes a single type template parameter), followed by

zero or more additional types.

Before implementing the filter_impl , we give it a prettier name:

template <template <typename> class Predicate, typename... T>

using filter = typename filter_impl<Predicate, unwrap_implements_t<T>...>::type;

This is another common extension to the “type” and “value” patterns: Starting in C++11, you

can define custom templated types or values that extract the type or value from the templated

class. Here, we make filter<...> a typing-saver for filter_impl<...>::type , with

the extra wrinkle that the types that come after the predicate pass through unwrap_

implements_t . (We’ll look at unwrap_implements_t some other time. The focus here is

on the interface list template metaprogramming.)

This using statement also teaches us that the first template parameter is a predicate, seeing

as it’s named Predicate .

Okay, now we start implementing filter_impl :

template <template <typename> class Predicate>

struct filter_impl<Predicate>

{

 using type = interface_list<>;

};

The base case is filtering an empty list of types, which is easy: You get an empty interface list.

Next comes the recursive case:

4/8

template <template <typename> class Predicate, typename T, typename... Rest>

struct filter_impl<Predicate, T, Rest...>

{

 using type = typename interface_list_append_impl<

 std::conditional_t<

 Predicate<T>::value,

 interface_list<winrt::impl::uncloak<T>>,

 interface_list<>

 >,

 typename filter_impl<Predicate, Rest...>::type

 >::type;

};

We test the predicate by looking for Predicate<T>::value and treating it as a bool .

Therefore the Predicate is expected to follow the value pattern:

template<typename I>

class Predicate

{

 static constexpr bool value =

 "true" if interface "I" satisfies the predicate;

}

std::conditional_t is a type-trait helper that is called like this:

std::conditional_t<condition, if_true, if_false>

If the condition is true , then the std::conditional_t resolves to the type if_true.

Otherwise, it resolves to if_false .

In this case, if the first interface in the interface list passes the test, then the

std::conditional_t produces a single-element interface_list consisting of the

uncloaked version of the interface. (We’ll look at uncloaking later.) Otherwise, it produces a

zero-element interface list.

This interface list is then combined via interface_list_append_impl with a recursive

call to process the rest of the list, and we extract the resulting type.

What this ultimately does is produce a type that is an interface_list where the elements

of the list are the interfaces which satisfy the predicate.

Next comes an alternate way of invoking the filter:

5/8

template <template <typename> class Predicate, typename ... T, typename ... Rest>

struct filter_impl<Predicate, interface_list<T...>, Rest...>

{

 using type = typename interface_list_append_impl<

 filter<Predicate, T...>,

 filter<Predicate, Rest...>

 >::type;

};

This is a convenience helper which lets you apply a filter to an existing interface_list ,

as well as optional additional types. It extracts the interfaces from the interface_list

and then filters them, and then also filters any additional types. (Since this is a recursive call,

those additional types might themselves be interface_list types, in which case the

inner types will be extracted from those types as well.)

And another convenience helper that will lead us to the answer to the puzzle we solved earlier

this week:

template <template <typename> class Predicate, typename D, typename ... I, typename
... Rest>

struct filter_impl<Predicate, winrt::implements<D, I...>, Rest...>

{

 using type = typename interface_list_append_impl<

 filter<Predicate, I...>,

 filter<Predicate, Rest...>

 >::type;

};

If the first type after the predicate is an implements , it extracts the second and subsequent

template parameters from the implements template type and filters those, and then

continues recursively with any remaining types.

We’re getting close to our goal of understanding the puzzle:

template <typename T>

using implemented_interfaces = filter<is_interface, typename T::implements_type>;

This defines a helper type implements_interfaces : Given a type, it pulls out the

implements_type and filters it with the is_interface predicate.

The implements_type is a type that the implements<> template defines so it can find

itself later:

6/8

template <typename D, typename... I>

struct implements : impl::producers<D, I...>,

 impl::base_implements<D, I...>::type

{

...

public:

 using implements_type = implements;

...

};

Note that we are taking advantage of C++ injected class names which lets us write

implements instead of the longer mplements<D, I...> . (The reason we have an explicit

implements_type subtype is that other classes in C++/WinRT also define an

implements_type , so this type name allows uniform access to the implemented thing.)

The is_interface class we discussed last time is the final piece of the puzzle: The

interfaces I... passed to implements<D, I...> are filtered through is_interface to

produce an interface_list<...> which holds all of the interfaces that are implemented.

The error that we got was complaining that there was no definition for first_interface ,

and from the definition at the start of this article, we see that the definition is present only if

the interface list is nonempty.

Putting it all together, we see that the error occurred because none of the I... types was

recognized as an interface by is_interface , so the interface list ended up empty, and in

order to make an object, it has to implement at least one interface. (Because without any

interfaces, what you have isn’t even a COM object.)

Bonus chatter: C++ template metaprogramming is like programming in Prolog without a

debugger.

¹ The introduction of fold expressions in C++17 provides an opportunity to convert recursion

to iteration. The trick is to rephrase your loop in terms of a fold expression. In this case, we

could have written it as

https://en.cppreference.com/w/cpp/language/injected-class-name

7/8

template<typename I, typename T, typename Predicate>

void find_interface_helper(

 const T* obj, const Predicate& pred,

 bool& found, void*& result)

 noexcept

{

 if (!found && pred.template test<I>()) {

 found = true;

 result = to_abi<I>(obj);

 }

}

template <typename...Interfaces>

struct interface_list

{

 template <typename T, typename Predicate>

 static constexpr void* find(const T* obj, const Predicate& pred) noexcept

 {

 bool found = false;

 void* result = nullptr;

 (find_interface_helper<Interfaces>(obj, pred, found, result), ...);

 return result;

 }

};

but it’s not clear that the effort was worth it. Fold expressions don’t have a way to break out

of the loop, so we need a found variable that we use to cause the remaining calls to have no

effect once a candidate is found.

Aha, maybe we can fold using a short-circuiting operator. The short circuiting lets us “break”

out of a “loop”.

8/8

template<typename I, typename T, typename Predicate>

bool find_interface_helper(

 const T* obj, const Predicate& pred,

 void*& result) noexcept

{

 if (pred.template test<I>()) {

 result = to_abi<I>(obj);

 return true;

 }

 return false;

}

template <typename...Interfaces>

struct interface_list

{

 template <typename T, typename Predicate>

 static constexpr void* find(const T* obj, const Predicate& pred) noexcept

 {

 void* result = nullptr;

 (find_interface_helper<Interfaces>(obj, pred, result) || ...);

 return result;

 }

};

And now we can inline the find_interface_helper :

template <typename...Interfaces>

struct interface_list

{

 template <typename T, typename Predicate>

 static constexpr void* find(const T* obj, const Predicate& pred) noexcept

 {

 void* result = nullptr;

 ([&] {

 if (pred.template test<Interfaces>()) {

 result = to_abi<Interfaces>(obj);

 return true;

 }

 return false;

 }() || ...);

 return result;

 }

};

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

