
1/3

March 24, 2022

Behind C++/WinRT: How does C++/WinRT decide which
interfaces are implemented?

devblogs.microsoft.com/oldnewthing/20220324-00

Raymond Chen

Last time, we diagnosed a problem by realizing that the unkwn.h header had not been

included prior to including any C++/WinRT headers, and that means that C++/WinRT did

not activate its code that supports classic COM interfaces.

This is going to be the first in what will probably be a very sporadic series of looking into the

C++/WinRT implementation, as reverse-engineered by me.¹ I’m writing it in part so that I’ll

be able to refer back to this write-up the next time I have to debug this code. And in part so

that there are more people who understand the insides of C++/WinRT and can help support

it. (This is the selfish reason for many of the articles I write: I’m writing them in order to

reduce my own workload.)

It all hangs on this definition of is_interface:

#ifdef WINRT_IMPL_IUNKNOWN_DEFINED

template <typename T>

struct is_interface : std::disjunction<

 std::is_base_of<Windows::Foundation::IInspectable, T>,

 std::conjunction<

 std::is_base_of<::IUnknown, T>,

 std::negation<is_implements<T>>>> {};

#else

template <typename T>

struct is_interface :

 std::is_base_of<Windows::Foundation::IInspectable, T> {};

#endif

The WINRT_IMPL_IUNKNOWN_DEFINED macro is an internal C++/WinRT macro that

remembers whether unknwn.h has been included. If so, then ::IUnknown is defined, and

C++/WinRT can activate classic COM support. Let’s translate the C++ type traits template

meta-programming into something we’re more familiar with.

https://devblogs.microsoft.com/oldnewthing/20220324-00/?p=106381
https://devblogs.microsoft.com/oldnewthing/20220323-00/?p=106378
https://github.com/microsoft/cppwinrt/blob/a903a2c107be5a1c80467110aee48d5db074b633/strings/base_implements.h#L47

2/3

One of the main tools of the C++ type traits system is the std::integral_constant<T,

v> . This is a type that wraps a constant value v of type T .

template<typename T, T v>

struct integral_constant

{

 static constexpr T value = v;

 ... other stuff not relevant here ...

};

For example, std::integral_constant<int, 42>::value is an integer constant whose

value is 42.

This seems pointless, but it’s not. Template meta-programming doesn’t have variables; it

operates on types. The std::integral_constant lets you treat a type as if it were a

variable whose value is the integral_constant::value .

C++ comes with a number of pre-made integral constants. Relevant today are

std::true_type and std::false_type , which wrap a Boolean true or false ,

respectively. And it also comes with some pre-made template types that manipulate them:

std::conjunction performs a logical and on its arguments.²

std::disjunction performs a logical or on its arguments.

std::negation performs a logical not on its argument.

Okay, now we can start taking apart the first expression.

template <typename T>

struct is_interface : std::disjunction<

 std::is_base_of<Windows::Foundation::IInspectable, T>,

 std::conjunction<

 std::is_base_of<::IUnknown, T>,

 std::negation<is_implements<T>>>> {};

We mentally convert the std::disjunction to || , the std::conjunction to && , and

the std::negation to ! .

template <typename T>

struct is_interface is true if

 std::is_base_of<Windows::Foundation::IInspectable, T> ||

 (

 std::is_base_of<::IUnknown, T> &&

 !is_implements<T>);

Now we can read out the logic. Something is considered an interface if either

It derives from winrt::Windows::Foundation::IInspectable , or

It derives from ::IUnknown and is not an implements .

3/3

The rejection of implements prevents is_interface from misdetecting implements as

a itself being COM interface.

Onward to the #else : If unknwn.h was not included, then we use a simpler definition of

is_interface that merely detects derivation from winrt::Windows::Foundation::

IInspectable .

In order to detect classic COM interfaces, C++/WinRT needs ::IUnknown to have been

defined. Otherwise, it has nothing to test as a base class.

So that’s the quick diagnosis of yesterday’s problem wherein C++/WinRT failed to recognize

classic COM interfaces.

Next time, we’ll dig in deeper to how the is_interface definition is used to pick out the

interfaces.

Bonus chatter: As I noted last time, the requirement that you include unknwn.h before

including C++/WinRT is no longer present as of C++/WinRT version 2.0.210922.5. The trick

is to forward-declare the ::IUnknown type so that you can talk about it without knowing

what it is. The std::is_base_class template type requires only that the proposed derived

class be complete. The base class (::IUnknown) doesn’t have to be complete.

Exercise: Why is it okay for std::is_base_class to accept an incomplete base class?

How can it possibly detect whether something derives from a class which has no definition?

¹ A lot of learning comes from reverse-engineering. When doing debugging, you are pretty

much forced into it.

² Actually, std::conjunction and std::disjunction behave more like their JavaScript

equivalent operators && and || because they short-circuit and support “truthiness”.

Answer to exercise: If the base class is incomplete, then nothing can derive from it. You

can’t derive from an incomplete type.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

