
1/4

March 18, 2022

Making our multiple-interface query more C++-like, part 2
devblogs.microsoft.com/oldnewthing/20220318-00

Raymond Chen

Last time, we wrote a C++-style wrapper around CoCreatInstanceEx that treats all of the

interfaces as optional. But probably, you are issuing the multiple-interface query in the case

where some or perhaps even all of the interfaces are required.

auto [widget, objectWithSite, persistFile] =

 CreateInstanceMultiQI<IWidget, IObjectWithSite, IPersistFile>

 (CLSID_Widget, nullptr, CLSCTX_LOCAL_SERVER);

The IWidget is required. Without that, you have nothing. But maybe the

IObjectWithSite is optional: If the widget doesn’t support IObjectWithSite , we just

won’t set a site on it.

We need a way to tell our CreateInstanceMultiQI function that some of the interfaces are

required and others are optional.

I’m going to pull a dirty trick. and instead of creating my own marker, I’m going to reuse an

existing template from the standard library, since it has such a great name:

std::optional . I’m going to say that all of the interfaces are required by default, but you

can wrap them inside a std::optional to say that they’re optional.

auto [widget, objectWithSite, persistFile] =

 CreateInstanceMultiQI<

 IWidget,

 std::optional<IObjectWithSite>,

 IPersistFile>

 (CLSID_Widget, nullptr, CLSCTX_LOCAL_SERVER);

Most of the stuff we wrote last time still works. We just need to add a validation step that

verifies that all of the required interfaces were successfully obtained.

https://devblogs.microsoft.com/oldnewthing/20220318-00/?p=106362
https://devblogs.microsoft.com/oldnewthing/20220317-00/?p=106359

2/4

template<typename Interface>

struct multiqi_traits

{

 using type = Interface;

 static constexpr bool is_required = true;

};

template<typename Interface>

struct multiqi_traits<std::optional<Interface>>

{

 using type = Interface;

 static constexpr bool is_required = false;

};

template<typename Interface>

using multiqi_traits_com_ptr =

 wil::com_ptr<typename multiqi_trauts<Interface>::type>;

The multiqi_traits template traits type assumes that every interface is required. The

specialization unwraps any interface that is wrapped inside a std::optional and

remembers that it is not required. For convenience, we also define a multiqi_traits_

com_ptr that represents the final com_ptr we want to return.

We can use this traits type to modify our existing function to throw if any required interface

was not obtained:

3/4

template<typename... Interfaces, std::size_t... Ints>

auto CreateInstanceMultiQIWorker(

 REFCLSID clsid, IUnknown* punkOuter,

 DWORD clsctx, MULTI_QI* mqi,

 std::index_sequence<Ints...>)

{

 THROW_IF_FAILED(

 CoCreateInstanceEx(clsid, punkOuter, clsctx,

 sizeof...(Interfaces), mqi));

 std::tuple<multiqi_traits_com_ptr<Interfaces>...> t;

 ((std::get<Ints>(t).attach(

 static_cast<typename multiqi_traits<Interfaces>::type*>

 (mqi[Ints].pItf))), ...);

 ([&] {

 if constexpr (multiqi_traits<Interfaces>::is_required) {

 THROW_IF_FAILED(mqi[Ints].hr);

 }

 }(), ...);

 return t;

}

template<typename... Interfaces>

std::tuple<multiqi_traits_com_ptr<Interfaces>...>

CreateInstanceMultiQI(

 REFCLSID clsid, IUnknown* punkOuter,

 DWORD clsctx)

{

 MULTI_QI mqi[] = {

 MULTI_QI{ &__uuidof(typename multiqi_traits<Interfaces>::type),

 nullptr, 0 }...

 };

 return CreateInstanceMultiQIWorker<Interfaces...>

 (clsid, punkOuter, clsctx, mqi,

 std::index_sequence_for<Interfaces...>{});

}

The first change is mechanical: We have to use multiqi_traits to unwrap the elements

of Interfaces... , because some of them may be std::optional<T> , and in those cases,

we want to reach inside the std::optional and extract the T .

The new part is the template parameter pack expansion of a lambda invocation. Template

parameter pack expansions can expand expressions, but we need to expand an if

statement. No problem: We wrap the if statement in a lambda, and then evaluate the

lambda immediately, and then take the lambda evaluation (now an expression!) and make

the evaluation the thing that is given to the template parameter pack expansion.

4/4

Note that we perform the validation as a separate step after transferring the raw interface

pointers into the tuple. This attempted optimization would be incorrect:

 ([&] {

 std::get<Ints>(t).attach(

 static_cast<typename multiqi_traits<Interfaces>::type*>

 (mqi[Ints].pItf));

 if constexpr (multiqi_traits<Interfaces>::is_required) {

 THROW_IF_FAILED(mqi[Ints].hr);

 }

 }(), ...);

If any of the required interfaces were not found, then the above incorrect version throws an

exception immediately, leaking all of the interface pointers that hadn’t yet been processed.

We need to move the raw pointers into smart pointers first, so they don’t leak, and only then

can we start throwing exceptions.

Bonus chatter: Note that this code allows you to call CreateInstanceMultiQI and

specify that all of the interfaces are optional. That’s intentional, because you might have this:

auto [widget, doodad] =

 CoCreateInstanceMultiQI<

 std::optional<IWidget>,

 std::optional<IDoodad>

 >(clsid, nullptr, CLSCTX_ANY);

In this case, both interfaces are tagged as optional. You don’t care whether the object is a

widget or doodad, but it needs to be one of the two. (Because CoCreateInstanceEx will fail

if none of the interfaces is supported.)

If you want to create the object, with the possibility that it is neither a widget nor a doodad,

you can specify IUnknown as a required interface. Every COM object supports IUnknown ,

so you know that will succeed if the object can be created at all.

Bonus bonus chatter: I put the required checks inside the CreateInstanceMultiQI‐

Worker , which means that you get a separate version of CreateInstanceMultiQIWorker

for each arity, as well for each pattern of required/optional. To improve code sharing, we

could factor out the part of the worker that is independent of the required/optional pattern,

so that function could be shared among all uses with the same number of interfaces.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

