
1/5

March 17, 2022

Making our multiple-interface query more C++-like, part 1
devblogs.microsoft.com/oldnewthing/20220317-00

Raymond Chen

The MULTI_QI  structure we’ve been looking at is kind of awkward to use, but maybe we can

improve on it with some C++ magic.

But before we start, we need to decide what we want. How about making it possible to write

this:

// Into new variables

auto [widget, objectWithSite, persistFile] =

   CreateInstanceMultiQI<IWidget, IObjectWithSite, IPersistFile>

       (CLSID_Widget, nullptr, CLSCTX_LOCAL_SERVER);


// Into existing variables

wil::com_ptr<IWidget> widget;

wil::com_ptr<IObjectWithSite> objectWithSite;

wil::com_ptr<IPersistFile> persistFile;


std::tie(widget, objectWithSite, persistFile) =

   CreateInstanceMultiQI<IWidget, IObjectWithSite, IPersistFile>

       (CLSID_Widget, nullptr, CLSCTX_LOCAL_SERVER);


// Preloading interfaces, keeping only one for now.

wil::com_ptr<IWidget> widget;


std::tie(widget, std::ignore, std::ignore) =

   CreateInstanceMultiQI<IWidget, IObjectWithSite, IPersistFile>

       (CLSID_Widget, nullptr, CLSCTX_LOCAL_SERVER);


with the rule that any interfaces that couldn’t be obtained are returned as empty com_ptr s.

(We’ll deal with required interfaces later.)

Here’s my idea. We’ll start with pseudo code and gradually fill it in.

https://devblogs.microsoft.com/oldnewthing/20220317-00/?p=106359


2/5

template<typename... Interfaces>

std::tuple<wil::com_ptr<Interfaces>...>

CreateInstanceMultiQI(

   REFCLSID clsid, IUnknown* punkOuter,

   DWORD clsctx)

{

   MULTI_QI mqi[] = {

       { &__uuidof(Interfaces), nullptr, 0 }...

   };


   THROW_IF_FAILED(

       CoCreateInstanceEx(clsid, punkOuter, clsctx,

                          sizeof...(Interfaces), mqi));


   std::tuple<wil::com_ptr<Interfaces>...> t;


   for (Index = 0; Index < sizeof...(Interfaces); Index++) {

       std::get<Index>(t).

           attach(static_cast<Interfaces[Index]*>

                       (mqi[Index].pItf));

   }


   return t;

}


First, we build an array of MULTI_QI  structures initialized with the interface identifiers

corresponding to the requested interfaces.

Next, we call CoCreateInstanceEx  with that array of MULTI_QI  structures to create the

object and query multiple interfaces. If we are unable to create the object, or if the object

supports none of the interfaces, then we throw the failure.

Otherwise, we have something to return. Create the output tuple and attach each of the

MULTI_QI  results to the corresponding slot in the tuple. The interfaces in the MULTI_QI

are all represented as IUnknown* , so we static_cast  them to the requested interface.

The static_cast  also validates that all of the requested interfaces derive from

IUnknown .¹

Okay, now that we have this sketch, we have to turn it into real C++.

First, we’ll fix the initialization of the MULTI_QI  array.

   MULTI_QI mqi[] = {

       MULTI_QI{ &__uuidof(Interfaces), nullptr, 0 }...

   };


You cannot expand a parameter pack into a series of braced initializers, so we make it an

explicit aggregate construction of a MULTI_QI . That converts the braced initializers into an

expression, and expressions support parameter pack expansion. That one was easy to fix.



3/5

The harder part is the weird for  loop that iterates over a parameter pack. For that, we need

help from our old friend the index sequence. (Previous series on index sequences.)

template<typename... Interfaces, std::size_t... Ints>

auto TupleFromMultiQi(

   MULTI_QI* mqi, std::index_sequence<Ints...>)

{

   std::tuple<com_ptr<Interfaces>...> t;

   ((std::get<Ints>(t).attach(

       static_cast<Interfaces*>(mqi[Ints].pItf))), ...);

   return t;

}


There are a few interesting things going on here.

First of all, this template function has two parameter packs. This is allowed in template

functions if everything after the first template parameter pack can be deduced. In our case,

the indices can be deduced from the index_sequence  parameter.

The second trick here is that we are expanding two parameter packs in a single expansion. If

you do this, the packs must be of the same size, and they are expanded in parallel with

corresponding elements.

Now we can put everything together.

https://devblogs.microsoft.com/oldnewthing/20200623-00/?p=103901


4/5

template<typename... Interfaces, std::size_t... Ints>

auto CreateInstanceMultiQIWorker(

   REFCLSID clsid, IUnknown* punkOuter,

   DWORD clsctx, MULTI_QI* mqi,

   std::index_sequence<Ints...>)

{

   THROW_IF_FAILED(

       CoCreateInstanceEx(clsid, punkOuter, clsctx,

                          sizeof...(Interfaces), mqi));


   std::tuple<com_ptr<Interfaces>...> t;

   ((std::get<Ints>(t).attach(

       static_cast<Interfaces*>(mqi[Ints].pItf))), ...);

   return t;

}


template<typename... Interfaces>

std::tuple<wil::com_ptr<Interfaces>...>

CreateInstanceMultiQI(

   REFCLSID clsid, IUnknown* punkOuter,

   DWORD clsctx)

{

   MULTI_QI mqi[] = {

       { &__uuidof(Interfaces), nullptr, 0 }...

   };


   return CreateInstanceMultiQIWorker<Interfaces...>

       (clsid, punkOuter, clsctx, mqi,

        std::index_sequence_for<Interfaces...>{});

}


I moved the CoCreateInstanceEx  into the helper function as well, to facilitate COMDAT

folding: All instantiations of CreateInstanceMultiQIWorker  with the same number of

interfaces will expand to the same code, because the static_cast  does nothing, and the

attach  does the same thing regardless of the type. The only thing that affects the code

generation is the number of interfaces. Therefore, all the instantiations will be shared, and

only one copy will go into the final binary.

This version treats all interfaces as optional. The only requirement is that at least one of them

be supported. Next time, we’ll look at the case where some interfaces are required and others

are optional. For example, you might require IWidget  support, but IObjectWithSite

support is optional.

¹ The static cast also succeeds if Interface  is void . Fortunately, __uuidof(void)  is

not defined, so that problem is caught elsewhere.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing


5/5








