
1/5

March 15, 2022

Reducing chattiness by querying for multiple interfaces
at once, part 1

devblogs.microsoft.com/oldnewthing/20220315-00

Raymond Chen

During performance analysis, you may discover that your usage of a remote COM object is

too chatty, meaning that too much time spent communicating back and forth at the expense

of actual work. We saw some time ago how you can marshal a buffer by value instead of by

reference, so that there is only one round trip to the server to get the buffer.

But maybe your chattiness problem is with the QueryInterface calls:

// Error checking elided for expository purposes.

// Create a widget.

wil::com_ptr<IWidget> widget;

CoCreateInstance(CLSID_Widget, nullptr,

 CLSCTX_LOCAL_SERVER, IID_PPV_ARGS(&widget));

// Set ourselves as its site.

wil::com_ptr<IObjectWithSite> objectWithSite;

widget->QueryInterface(IID_PPV_ARGS(&objectWithSite));

objectWithSite->SetSite(this);

// Load it from a file.

wil::com_ptr<IPersistFile> persistFile;

widget->QueryInterface(IID_PPV_ARGS(&persistFile));

persistFile->Load(fileName, STGM_READ);

// Ready to do widget things.

widget->DoSomething();

Let’s count the number of calls to the server, and how many of them are performing actual

work.

Call Purpose Nature

CoCreateInstance Create the widget Real work

https://devblogs.microsoft.com/oldnewthing/20220315-00/?p=106350
https://devblogs.microsoft.com/oldnewthing/20160212-00/?p=93013

2/5

QueryInterface Get the IObjectWithSite Bookkeeping

SetSite Set the site Configuration

QueryInterface Get the IPersistFile Bookkeeping

Load Load the widget Initialization

DoSomething Do something Activity

There are six calls to the server, and a third of them are just bookkeeping.

We can batch together the QueryInterface by using IMultiQI :

// Error checking elided for expository purposes.

// Create a widget.

wil::com_ptr<IWidget> widget;

CoCreateInstance(CLSID_Widget, nullptr,

 CLSCTX_LOCAL_SERVER, IID_PPV_ARGS(&widget));

// Get two interfaces with one call.

wil::com_ptr<IMultiQI> multiQI;

widget->QueryInterface(IID_PPV_ARGS(&multiQI));

MULTI_QI mqi[2] = {

 { &__uuidof(IObjectWithSite), nullptr, 0 },

 { &__uuidof(IPersistFile), nullptr, 0 },

};
HRESULT hr = multiQI->QueryMultipleInterfaces(2, mqi);

wil::com_ptr<IObjectWithSite> objectWithSite;

objectWithSite.attach(mqi[0].pItf);

wil::com_ptr<IPersistFile> persistFile;

persistFile.attach(mqi[1].pItf);

if (hr != S_OK) {

 // Failed to get at least one interface.

 return;

}

// Set ourselves as its site.

objectWithSite->SetSite(this);

// Load it from a file.

persistFile->Load(fileName, STGM_READ);

// Ready to do widget things.

widget->DoSomething();

3/5

We were able to combine the two QueryInterface calls into one by issuing a batch query.

Note that the QueryInterface for IMultiQI is not a server call: The IMultiQI interface

is implemented locally on the proxy.

But wait, we can do even better: We can use CoCreateInstanceEx to obtain all thread

interfaces as part of the initial creation:

// Error checking elided for expository purposes.

// Create a widget and request three interfaces.

MULTI_QI mqi[3] = {

 { &__uuidof(IWidget), nullptr, 0 },

 { &__uuidof(IObjectWithSite), nullptr, 0 },

 { &__uuidof(IPersistFile), nullptr, 0 },

};
HRESULT hr = CoCreateInstanceEx(

 CLSID_Widget, nullptr, CLSCTX_LOCAL_SERVER,

 nullptr, 3, mqi);

wil::com_ptr<IWidget> widget;

widget.attach(mqi[0].pItf);

wil::com_ptr<IObjectWithSite> objectWithSite;

objectWithSite.attach(mqi[1].pItf);

wil::com_ptr<IPersistFile> persistFile;

persistFile.attach(mqi[2].pItf);

if (hr != S_OK) {

 // Failed to get at least one interface.

 return;

}

// Set ourselves as its site.

objectWithSite->SetSite(this);

// Load it from a file.

persistFile->Load(fileName, STGM_READ);

// Ready to do widget things.

widget->DoSomething();

Now we have gotten rid of all of the bookkeeping calls.

Call Purpose Nature

CoCreateInstanceEx Create the widget and get interfaces Real work

4/5

SetSite Set the site Configuration

Load Load the widget Initialization

DoSomething Do something Activity

Okay, so now we get to talk about error checking.

There are three classes of results related to whether the interfaces could be obtained.

Interfaces obtained QueryMultipleInterfaces CoCreateInstanceEx

All S_OK

Some but not all S_FALSE CO_S_NOTALL‐
INTERFACES

None Error

Note that for CoCreateInstanceEx , there are other errors possible to report any problems

creating the object, but I’m looking at the interface-related errors.

In our case, we need all of the interfaces, so anything that isn’t S_OK is bad news, and we

give up immediately.

There may be other cases where you are probing for an interface and will take advantage of it

if present, but its absence should not be considered a failure. In that case, you would dig into

the MULTI_QI to find out which interfaces could be obtained and which failed. You can use

SUCCEEDED(hr) as a shortcut to detect that something was obtained.

Note that in our sample code above, the obtained interfaces are immediately transferred to

smart pointers so that they will be released properly, even in the case where not all interfaces

were obtained.

Now, it may be that the various calls to QueryInterface are scattered through the code,

and it is unwieldy to query them at creation and then pass them around to all the places that

query for them. We’ll look at that case next time.

Bonus chatter: Note that the batched interface query is a significant improvement only for

remote objects. For local objects, calls to the object occur directly, so there’s no marshaling

overhead. Furthermore, local objects are unlikely to support the IMultiQI interface at all.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

5/5

