
1/3

March 4, 2022

If the slim reader/writer lock (SRWLOCK) doesn’t
remember who the shared lock owner is, does that mean
it’s okay to acquire it recursively?

devblogs.microsoft.com/oldnewthing/20220304-00

Raymond Chen

The slim reader/writer lock (SRWLOCK) synchronization object was introduced in Windows

Vista and allows threads to acquire the lock either in shared or exclusive modes. Multiple

simultaneous shared acquisitions are permitted from different threads, but an exclusive

acquisition cannot coexist with any other acquisition (either shared or exclusive).

Some sacrifices had to be made in order for the slim reader/writer lock to be small and fast.

It doesn’t support lock upgrades or downgrades (converting a shared lock to exclusive or vice

versa), or recursive acquisition (acquiring a lock when the calling thread already possesses a

lock).

Since the slim reader/writer lock is the size of a pointer, and a successful shared acquisition

returns control to the caller, this means that all of the state for recording shared lock

acquisitions must fit into a single pointer-sized variable. In particular, there is not enough

room to record all of the threads that have acquired the lock in shared mode. I’ve seen it

argued that this proves that it’s actually okay to acquire the lock recursively in shared mode,

since there’s no way the operating system could detect that you broke the rules. Besides,

shared locks can be taken by multiple threads concurrently, so why should concurrent

acquisition by the same thread be any different?

While it’s true that there’s no way the operating system can detect that you broke the rules,

there is no requirement that the operating system do this detection. There can be other

consequences of breaking the rules.

Although slim reader/writer locks are neither fair nor FIFO, the current implementation is

mostly fair and FIFO. If the lock is held in shared mode and there is an exclusive waiter, then

shared locks queue up behind the exclusive waiter rather than piggybacking off the existing

shared wait. (We followed the same policy when we wrote our asynchronous version of a slim

reader/writer lock.) This avoids a situation where a highly-contended resource is constantly

being acquired briefly by multiple threads in shared mode, with overlapping acquisition

lifetimes, causing the exclusive acquirer to be locked out indefinitely.

https://devblogs.microsoft.com/oldnewthing/20220304-00/?p=106309
https://devblogs.microsoft.com/oldnewthing/20170705-00/?p=96535
https://devblogs.microsoft.com/oldnewthing/20210319-00/?p=104979


2/3

Thread 1 Thread 2 Thread 3 Thread 4

  Acquired shared    

Try acquire exclusive Acquired shared  

(still waiting)   Acquired shared

  Acquired shared  

  Acquired shared  

(still waiting)   Acquired shared

  Acquired shared  

  Acquired shared  

To avoid this problem, the SRWLock makes a shared acquisition attempt queue up behind

any pending exclusive waiter. In the above scenario, we get this:

Thread 1 Thread 2 Thread 3 Thread 4

  Acquired shared    

Try acquire exclusive Try acquire shared

(still waiting)

 

Acquired exclusive   Try acquire shared

(still waiting)

     

  Acquired shared

 

Acquired shared

 

Acquired shared

 

Now you can see what can go wrong if you attempt a recursive shared acquisition: Your

second shared acquisition waits for the pending exclusive waiter. The pending exclusive

waiter is waiting for the first shared acquisition to be released. And the first shared

acquisition can’t be released until it regains control of the thread from the second shared

acquisition. Three-party circular deadlock.

Thread 1 Thread 2

  Acquired shared

Try acquire exclusive ⇗

(still waiting) ⇐ Try acquire shared

https://devblogs.microsoft.com/oldnewthing/20180202-00/?p=97955


3/3

The Application Verifier detects and reports attempted recursive acquisitions to help you find

them before they cause problems in production. As I noted some time ago, one of my

colleagues remarked,

We hit a deadlock in production due to erroneous recursive acquisition. It is fiendishly difficult
to debug. I would put it in the “immediate fix” category.

Bonus chatter: Recursive exclusive acquisition results in a consistent deadlock, so you

might wonder why Application Verifier goes to the effort of diagnosing it, seeing as you’d

certainly notice that your program is hung.

First of all, Application Verifier records additional information to help you diagnose the

problem: It captures the stack at the point the first acquisition was made. This additional

information may help you identify the root cause. For example, maybe there’s a code path out

of a function that forgets to release the lock. The acquisition stack trace may help you find

that function.

Second, you may be deadlocking without realizing it. For example, if the deadlock occurs

during thread cleanup, you may not notice that your thread never exits. It just manifests

itself as a thread leak. Furthermore, if there was any other cleanup code that is expected to be

running on the thread after the erroneous deadlock, then that cleanup code will never run.

These leaks may go unnoticed until you find that your production system’s memory usage

slowly increases and its performance slowly decreases, until it finally hits a resource

exhaustion failure after being left running for days. Bugs that require days to reproduce are

not anybody’s idea of fun.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/20160506-00/?p=93416
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

