
1/2

February 28, 2022

Zero-cost exceptions aren’t actually zero cost
devblogs.microsoft.com/oldnewthing/20220228-00

Raymond Chen

There are two common models for exception handling in C++. One is by updating some

program state whenever there is a change to the list of things that need to be done when an

exception occurs, say, because a new exception handler is in scope or has exited scope, or to

add or remove a destructor from the list of things to execute during unwinding. Another

model is to use metadata to describe what to do if an exception occurs. There is no explicit

management of the state changes at runtime; instead, the exception machinery infers the

state by looking at the program counter and consulting the metadata.

Metadata-based exception handling is often misleadingly called zero-cost exceptions, which

makes it sound like exceptions cost nothing. In fact, it’s the complete opposite: Metadata-

based exception handling should really be called super-expensive exceptions.

The point of metadata-based exception handling is that there is no code in the mainline (non-

exceptional) code path for exception support. The hope is that exceptions are rare, so you end

up with a net win:

Mode Runtime-managed Metadata-based

Mainline code Update state at runtime  

Exception occurs Consult the state to

find the correct handler

Take the program counter,

find the metadata that applies to it,


consult the metadata to

find the correct handler

Notice that using metadata-based so-called “zero-cost” exceptions actually results in a

significantly higher cost for throwing an exception, because the exception-throwing

machinery has to go find the metadata so it can look up which handler to run. This metadata

is typically stored in a format optimized for size, not speed, so extra work has to happen at

exception-throwing time to decode the data in order to find the correct handler.

The name “zero-cost exceptions” refers to the empty box in the upper right corner. There is

no code generated to maintain state just in case an exception occurs.

https://devblogs.microsoft.com/oldnewthing/20220228-00/?p=106296
https://mortoray.com/2013/09/12/the-true-cost-of-zero-cost-exceptions/
https://devblogs.microsoft.com/cppblog/making-cpp-exception-handling-smaller-x64/


2/2

But even though the box is empty, that doesn’t mean that things are still the same as if there

were no exceptions.

The presence of exceptions means that the code generation is subject to constraints that don’t

show up explicitly in the code generation: Before performing any operation that could

potentially throw an exception, the compiler must spill any object state back into memory if

the object is observable from an exception handler. (Any object with a destructor is

observable, since the exception handler may have to run the destructor.)

Similarly, potentially-throwing operations limit the compiler’s ability to reorder or eliminate

loads from or stores to observable objects because the exception removes the guarantee of

mainline execution.

These costs are not visible to the naked eye. They take the form of lost optimization

opportunities.

Zero-cost exceptions are great (despite the blatant misnomer), but be aware that the cost is

not actually zero.

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

