
1/3

February 25, 2022

How can I monitor changes to the reference count of a
C++/WinRT object?

devblogs.microsoft.com/oldnewthing/20220225-00

Raymond Chen

Say you’re debugging your C++/WinRT object and you want to keep an eye on its reference

count, perhaps because you’re tracking down a memory leak. How can you do that?

For concreteness, let’s say we’ve got these objects.

// A local object without a projection

struct Faucet : winrt::implements<Faucet, IFaucet>

{

 bool is_dripping = false;

 Faucet()

 {

 ... construct the faucet ...

 }

 ... other methods ...

};

// A projected class

namespace winrt::Fixtures::implementation

{

 struct Lamp : LampT<Lamp>

 {

 bool is_on = false;

 Lamp()

 {

 ... construct the lamp ...

 }

 ... other methods ...

 };

}

If you are the caller of make_self , you can inspect that result to find the reference count.

https://devblogs.microsoft.com/oldnewthing/20220225-00/?p=106291

2/3

auto faucet = winrt::make_self<Faucet>();

auto lamp = winrt::make_self<implementation::Lamp>();

For our purposes, make_self is convenient because it gives you a pointer to the

implementation class, which makes it easy to extract the reference count. You can see it in

the debugger:

Name Value

◢ faucet 0x00d4bab8 {…}

  ◢ [winrt::impl::heap_implements<Faucet>] {…}

    ◢ Faucet {…}

        ◢ winrt::implements<Faucet, IFaucet> {…}

        winrt::impl::producers_base<Faucet,
std::tuple<IFaucet> >

{…}

        ◢ winrt::impl::root_implements<Faucet,
std::tuple<IFaucet> >

{m_references=0x00000001
}

           
winrt::impl::root_implements_composing_outer<0>

{…}

           
winrt::impl::root_implements_composable_inner<Faucet,
0>

{…}

            winrt::impl::module_lock_updater<1> {…}

            __vfptr 0x004b4464 {…}

            m_references 0x00000001 ←

  IUnknown {…}

  [Raw View] {m_ptr=0x00d4bab8 {…} }

You get a similar view for lamp .

From here, you can right-click the m_references and say Break When Value Changes.

If you are more of a roll-up-your-sleeves kind of person, you can extract the address of that

reference count variable from the Immediate window:

3/3

&faucet.m_ptr->m_references

0x00d4babc 0x00000001

And then you can create a data breakpoint that triggers when the reference count changes.

If you’re not so lucky and the object was created via projection or make , then what comes

out is an interface pointer, not a pointer to the concrete object. So how do you get a pointer to

the concrete object?

My trick is to set a breakpoint on the constructor. In the constructor, you have the this

pointer, and you can follow the same cookbook above to get to the m_references .

If you’re really unlucky, the constructor was optimized out. You can ask the compiler not to

optimize out the constructor by marking it as noinline .

 // or __attribute__((noinline)) if that's what your compiler prefers

 __declspec(noinline) Faucet()

 {

 ... construct the faucet ...

 }

The last wrinkle is that you may see a write to m_references that comes from make_

weak_ref instead of the usual AddRef and Release . C++/WinRT uses the same trick

that WRL uses to squeeze a weak reference and a reference count into a single integer: If no

weak reference has been created, then the m_references is the actual reference count. But

once a weak reference is created, then m_references becomes a pointer to the weak

reference, and the reference count moves into the weak reference.

When that happens, you want to double-click the call stack entry for make_weak_ref ,

expand the weak_ref variable, find the m_strong and do another Break When Value

Changes. (The corresponding immediate expression is &weak_ref.m_ptr->m_strong .)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20200817-00/?p=104089
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

