
1/3

February 23, 2022

COM asynchronous interfaces, part 8: Asynchronous
release, the problems

devblogs.microsoft.com/oldnewthing/20220223-00

Raymond Chen

It is usually the case that when you release a COM object, you don’t particularly care what

happens to the object afterward. There are some cases where you do care, usually when there

is some cleanup activity associated with the final release that you are relying upon. But

usually, you are declaring lack of interest in the future activities of the object when you

release.

By default, the Release method is synchronous. If the object is remote, then the final¹

release request goes out to the server, and you sit and wait until the server replies that yes, it

has definitely released your object. I’ve run into cases where my code has hung because I’m

cleaning up some object that has a reference to a remote object, and the release of the remote

object is hung because the server has stopped responding. I really don’t care about knowing

when the release is completed and would be happy to let the release occur asynchronously.

Can you release asynchronously?

Yes, you can release asynchronously. It roughly follows the same pattern we’ve been using so

far, with IUnknown as the interface being run asynchronously. However, AsyncIUnknown

requires extra care because you’re messing with the underlying object lifetimes. I’ll guide you

through the treacherous waters.

Let’s make our SlowPipe even slower by adding a delay to its destructor.

struct SlowPipe :

 winrt::implements<SlowPipe, ::IPipeByte, winrt::non_agile>

{

 // exit the STA thread when we destruct

 ~SlowPipe() {

 Sleep(2000);

 printf("Finally destroyed\n");

 PostQuitMessage(0);

 }

 ...

};

https://devblogs.microsoft.com/oldnewthing/20220223-00/?p=106282

2/3

We can avoid this slow Release by making the release asynchronous. Our initial impulse is

to follow the general pattern for asynchronous calls:

// Don't use this code. See text.

int main(int, char**)

{

 winrt::init_apartment(winrt::apartment_type::multi_threaded);

 {

 auto pipe = CreateSlowPipeOnOtherThread();

 winrt::com_ptr<::AsyncIUnknown> call;

 auto factory = pipe.as<ICallFactory>();

 winrt::check_hresult(factory->CreateCall(

 __uuidof(::AsyncIUnknown), nullptr,

 __uuidof(::AsyncIUnknown),

 reinterpret_cast<::IUnknown**>(call.put())));

 winrt::check_hresult(call->Begin_Release());

 // force all objects to destruct, to prove we're done

 }

 printf("Getting on with our life.\n");

 Sleep(5000); // just so we can see the release complete

 return 0;

}

We are following the general asynchronous pattern: Get the call factory, create an

asynchronous call for IUnknown , begin the Release , and then throw it all away, to

indicate that you are not interested in the result.

Unfortunately, this doesn’t work.

The first mistake is failing to keep track of all the outstanding references. At the time we call

Begin_Release , there are three outstanding references to the object: One in pipe ,

another in factory , and a third in call . That Begin_Release is not going to be the

final release, so it’s just going to decrement the local reference count in the proxy, and

nothing will go out over the wire to the remote object. And then when we get around to

cleaning up and releasing pipe , that’s the one that releases the final reference in the proxy,

and that’s the one that triggers a call to the remote object.

That call is a synchronous call.

So we need to make sure that the only remaining reference to the remote object is in the call

object. We can do that by releasing the pipe and factory references early, prior to their

natural destruction.

3/3

The next problem is that we performed a Begin_Release to initiate an asynchronous

Release operation, and then the call object destructs, which performs its own

Release . We’re performing a double-release of that last reference: One release is

asynchronous (explicit call to Begin_Release) and the other is synchronous (implicit

Release at destruction).

Okay, so instead of allowing call to destruct naturally, we need to perform a detach

operation to remove control of the call from the call variable. In this case, we’re telling the

call variable, “Don’t worry, I’ll take care of it.” And we took care of it by asking for the

release to happen asynchronously.

But things are still not quite right.

You see, the usual pattern of throwing away a call doesn’t work for IUnknown::Release :

Under the usual pattern, the call object normally discovers whether you plan on calling

Finish_ by observing that you released the object. But when we use the async pattern for

IUnknown::Release , we just throw away the call object without even calling Release .

This leaves the call object in a pickle: “Should I remain valid so the caller can call Finish_

Release ? Or should I just clean up right away?”

The call object for AsyncIUnknown plays it safe and assumes you want to call Finish_

Release . But that means you now must call Finish_Release .

But wait, calling Finish_Release means that we block until the Release completes.

That brings us back full circle: Our attempt at an asynchronous Release resulted in a

synchronous wait!

The solution here is to aggregate the call so we can be notified via ISynchronize::Signal

that the call has completed. At that point, we call Finish_Release to complete the call.

Putting this all together will require us to apply a lot of what we’ve learned about COM

aggregation. We’ll set to work next time.

¹ Only the final release request goes over the wire. Non-final releases merely decrement the

reference count of the local proxy.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

