
1/5

February 22, 2022

COM asynchronous interfaces, part 7: Being called
directly when the operation completes

devblogs.microsoft.com/oldnewthing/20220222-00

Raymond Chen

Last time, we learned how we could wait on the internal event handle that is signaled when

an asynchronous call completes. But that’s still an indirect discovery of completion. You can

register a threadpool wait on the handle, but when your wait callback runs, it’s running on

the threadpool, and if you were operating in a single-threaded apartment, you’ll have to get

control back into that apartment (say by using an IContextCallback).

But there’s a way to tell the COM marshaling infrastructure to call you back directly, and it

even respects your object’s agility, so if you want to run code in the original apartment, you

can do that by providing a non-agile object.

The way to ask for a direct callback is to aggregate the call object into your custom outer

object. Effectively, you become the call object through the magic of aggregation, so all the

things that normally are done to the call object are instead done to you.

The COM infrastructure uses the ISynchronize interface to communicate the state of the

call to the call object. If you aggregate the call object, you can take over the responsibilities of

ISynchronize .

The ISynchronize interface models a kernel event handle. The methods are called as

follows:

ISynchronize::Reset : COM calls this method when the asynchronous call starts.

The idea is that it’s resetting the kernel event, to indicate that the call has not

completed.

ISynchronize::Signal : COM calls this method when the asynchronous call

completes. The idea is that it’s setting the kernel event, to indicate that the call is now

complete.

ISynchronize::Wait : COM calls this method when the client calls the Finish_

method, indicating that it wants to wait for the call to complete (if it hasn’t completed

already). When the Wait method returns, COM assumes that the call has completed

and returns the answer that was saved in the call object.

https://devblogs.microsoft.com/oldnewthing/20220222-00/?p=106279
https://devblogs.microsoft.com/oldnewthing/20220221-42/?p=106275

2/5

You can substitute any other object that follows this same pattern. You don’t even have to

have a real kernel object. You just need something that can pretend to be a kernel object

enough to satisfy the ISynchronize contract.

struct MySynchronize : winrt::implements<MySynchronize, ::ISynchronize>

{

 winrt::com_ptr<::IUnknown> m_inner;

 int32_t query_interface_tearoff(winrt::guid const& id, void** object)

 const noexcept override {

 if (m_inner) return m_inner.as(id, object);

 return E_NOINTERFACE;

 }

 wil::slim_event ready;

 STDMETHODIMP Reset() { ready.ResetEvent(); return S_OK; }

 STDMETHODIMP Signal() { ready.SetEvent();

 printf("Call completed!\n"); // do cool stuff here

 return S_OK; }

 STDMETHODIMP Wait(DWORD flags, DWORD timeout) {

 assert(is_mta()); // we won't be pumping messages

 assert(!(flags & COWAIT_ALERTABLE)); // we won't be waiting alertably

 return ready.wait(timeout) ? S_OK : RPC_S_CALLPENDING;

 }

 static bool is_mta() {

 APTTYPE type;

 APTTYPEQUALIFIER qualifier;

 THROW_IF_FAILED(CoGetApartmentType(&type, &qualifier));

 return type == APTTYPE_MTA;

 }

};

The MySynchronize class starts with one of the common aggregation outer object patterns:

It has an inner object (m_inner), and we want to aggregate all the interfaces of the inner

object. Therefore, our custom query_interface_tearoff method forwards all interface

queries to the inner object.

After that comes our custom implementation of ISynchronize . Our version doesn’t use a

real kernel object. It uses the lightweight event-like object built out of WaitOnAddress as

provided by the Windows Implementation Library.

One of the tricky parts here is the Wait method: Most of the flags relate to how the method

should wait if running on an STA. We don’t want to deal with any of that nonsense, so we just

decide not to support them, nor do we support alertable waits.

Mind you, this decision not to support STA or alertable waits needs to be done in

coordination with the clients of the call object. But if you yourself are the client, then you

know whether you ever use it from an STA or with an alertable wait. (COM always calls with

3/5

COWAIT_DEFAULT from the thread that called the Finish_ method.)

A simpler way is to delegate the ISynchronize methods back to the call object:

struct MySynchronize :

 winrt::implements<MySynchronize, ::ISynchronize, winrt::non_agile>

{

 winrt::com_ptr<::IUnknown> m_inner;

 int32_t query_interface_tearoff(winrt::guid const& id, void** object)

 const noexcept override {

 if (m_inner) return m_inner.as(id, object);

 return E_NOINTERFACE;

 }

 auto Sync() { return m_inner.as<ISynchronize>(); }

 STDMETHODIMP Reset() { return Sync()->Reset(); }

 STDMETHODIMP Signal() {

 auto hr = return Sync()->Signal();

 printf("Call completed!\n"); // do cool stuff here

 return hr;

 }

 STDMETHODIMP Wait(DWORD flags, DWORD timeout) {

 return Sync()->Wait(flags, timeout);

 }

};

Let’s take this out for a spin.

4/5

int main(int, char**)

{

 winrt::init_apartment(winrt::apartment_type::multi_threaded);

 auto pipe = CreateSlowPipeOnOtherThread();

 auto outer = winrt::make_self<MySynchronize>();

 auto factory = pipe.as<ICallFactory>();

 winrt::check_hresult(factory->CreateCall(

 __uuidof(::AsyncIPipeByte), winrt::get_unknown(*outer),

 __uuidof(::IUnknown), outer->m_inner.put()));

 auto call = outer.as<::AsyncIPipeByte>();

 printf("Beginning the Pull\n");

 winrt::check_hresult(call->Begin_Pull(100));

 printf("Doing something else for a while...\n");

 Sleep(100);

 printf("Getting the answer\n");

 BYTE buffer[100];

 ULONG actual;

 winrt::check_hresult(call->Finish_Pull(buffer, &actual));

 printf("Pulled %lu bytes\n", actual);

 return 0;

}

When the call completes, the ISynchronize::Signal method on the outer object is

called, and we can take that opportunity to do some work. Our MySynchronize object is

marked as non-agile, so this call is made in the same apartment in which it was created,

which is convenient if the Signal method wants to access other objects with apartment

affinity.

Note that we forward the call into the inner object first, before doing our work. That way, our

work is done while the event is signaled. If we didn’t do that, then if the work calls Finish_

to get the results of the call that just completed, it will deadlock because the Finish_ is

going to wait for the call to be signaled as complete.

So there’s a practical use for COM aggregation: It lets you become part of another object and

respond to its methods.

Bonus chatter: I cheated a bit and used a throwing method when forwarding the

ISynchronize methods. COM methods are not allowed to throw C++ exceptions (because

C++ exceptions are not part of the ABI), so we need to convert them back to HRESULT s.

5/5

struct MySynchronize :

 winrt::implements<MySynchronize, ::ISynchronize, winrt::non_agile>

{

 winrt::com_ptr<::IUnknown> m_inner;

 int32_t query_interface_tearoff(winrt::guid const& id, void** object)

 const noexcept override {

 if (m_inner) return m_inner.as(id, object);

 return E_NOINTERFACE;

 }

 auto Sync() { return m_inner.as<ISynchronize>(); }

 STDMETHODIMP Reset() try { return Sync()->Reset(); }

 catch (...) { return winrt::to_hresult(); }

 STDMETHODIMP Signal() try {

 auto hr = return Sync()->Signal();

 printf("Call completed!\n"); // do cool stuff here

 return hr;

 } catch (...) { return winrt::to_hresult(); }

 STDMETHODIMP Wait(DWORD flags, DWORD timeout) try {

 return Sync()->Wait(flags, timeout);

 } catch (...) { return winrt::to_hresult(); }

};

Bonus bonus chatter: Note how this differs from containment, which is the more usual

pattern for combining objects. If the outer object contained a call object, then queries on the

call object would be satisfied by the call object. The outer object never gets a chance to take

over the ISynchronize .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

