
1/2

February 21, 2022

COM asynchronous interfaces, part 6: Learning about
completion without polling

devblogs.microsoft.com/oldnewthing/20220221-42

Raymond Chen

So far, the way we’ve been waiting for an asynchronous call to complete is by polling for it. Is

there a way to be notified directly when the operation completes? For example, while doing

work, we may call out to other methods, and if the asynchronous call completes while those

other methods are busy, we’d like to cancel those other calls so we can get back to the main

work of dealing with the asynchronous call.

One way to do this is to peek at the kernel event handle that is hiding inside the

ISynchronize interface. The ISynchronizeHandle interface lets you do that.

 HANDLE rawEventHandle = nullptr;

 call.as<::ISynchronizeHandle>()->GetHandle(&rawEventHandle);

Note that the handle that comes back is still owned by the call, so don’t close it. This is not

usually a problem because you typically keep the call around since you will want to get the

result of the asynchronous call, For example, you might want to suspend the current

coroutine until the asynchronous call has completed.

 co_await winrt::resume_on_signal(rawEventHandle);

 // coroutine resumes when the asynchronous call completes

 call.Finish_Something();

Or you might initiate multiple asynchronous calls, and you want to process the results from

whichever call finishes first.

https://devblogs.microsoft.com/oldnewthing/20220221-42/?p=106275

2/2

 HANDLE readyEvents[2];

 call1.as<::ISynchronizeHandle>()->GetHandle(&readyEvents[0]);

 call2.as<::ISynchronizeHandle>()->GetHandle(&readyEvents[1]);

 DWORD index;

 auto hr = CoWaitForMultipleHandles(COWAIT_DEFAULT, INFINITE,

 2, readyEvents, &index);

 if (hr == S_OK) {

 if (index == 0) { /* deal with call1 */ }

 if (index == 1) { /* deal with call2 */ }

 }

If you want to use the handle in a way unrelated to the call it came from, then duplicate the

handle, at which point you become responsible for the lifetime of the duplicate.

 winrt:handle eventHandle;

 winrt::check_bool(DuplicateHandle(

 GetCurrentProcess(), rawEventHandle,

 GetCurrentProcess(), eventHandle.put(),

 SYNCHRONIZE, FALSE, 0));

The duplicate handle eventHandle is your responsibility to close. You can hand it to some

other component which uses it to know when the asynchronous method call has completed.

Just remember to close it when you’re done.

Next time, we’ll look at a way of getting called back directly when the asynchronous call

completes.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

