
1/2

February 18, 2022

COM asynchronous interfaces, part 5: The unreliable
server

devblogs.microsoft.com/oldnewthing/20220218-00

Raymond Chen

So far, we’ve been making asynchronous calls on the assumption that the server is well-

behaved, but just a little slow. But what if the server is not being responsive at all?

Let’s break down the steps that take place on the main thread and classify which ones involve

synchronous calls to the server. These are the ones that are going to cause trouble if the

server is unresponsive.

Querying for the call factory.

The call factory lives on the client, so obtaining the call factory for a proxy does not call out to

the server.

Creating a call object.

To create the call object, COM needs to verify that the remote object does support the

interface you are trying to call.

In our case, we have the proxy in the form of an IPipeByte , and in order to have obtained

that, we must already have confirmed that the remote object supports that interface. So

creating the call object does not call to the server.

On the other hand, if our proxy had been in the form of an IUnknown , then creating the call

object for AsyncIPipeByte would require calling out to the server to QueryInterface the

server object for IPipeByte . This query has to be done only once per proxy, because COM

proxies cache QueryInterface results.

The Begin_ methods on the asynchronous interface call out to the server but do not wait

for a response. They return immediately, and the arrival of a response from the server can be

queried by polling the ISynchronize::Wait method.

https://devblogs.microsoft.com/oldnewthing/20220218-00/?p=106272

2/2

So if you want to avoid synchronous calls to a possible-unresponsive server when you make

your asynchronous call, make sure that you have obtained the interface on the remote object

ahead of time.

One way to improve the likelihood that you can get that interface is to query for it the

moment the server gives it to you. The server is almost certain to be responsive at that point,

seeing as it just responded to your previous query. If you obtained the object via CoCreate‐

Instance , you can request multiple interfaces at once by calling CoCreateInstanceEx ,

thereby avoiding an extra round trip to the server for each additional interface. (We’ll look

more at CoCreateInstanceEx in a few weeks.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

