
1/2

February 17, 2022

COM asynchronous interfaces, part 4: Doing work while
waiting for the asynchronous operation

devblogs.microsoft.com/oldnewthing/20220217-00

Raymond Chen

Last time, we learned how to abandon an asynchronous operation after a timeout. But maybe

we want to do some useful work while waiting for the operation. (For example, maybe you

want to initiate multiple asynchronous operations and let them run in parallel, and then

collect the results later.)

As before, we check on the completion state of the asynchronous call by using the

ISynchronize interface on the call object. But this time, we call ISynchronize:;Wait

with a timeout of zero, which means that it doesn’t actually wait. It just reports on whether

the operation has completed. In other words, passing a wait time of zero lets you poll. (Note

that cancellation counts as completion.)

Let’s make these changes to our original program.

https://devblogs.microsoft.com/oldnewthing/20220217-00/?p=106263
https://devblogs.microsoft.com/oldnewthing/20220216-00/?p=106261

2/2

int main(int, char**)

{

 winrt::init_apartment(winrt::apartment_type::multi_threaded);

 auto pipe = CreateSlowPipeOnOtherThread();

 winrt::com_ptr<::AsyncIPipeByte> call;

 auto factory = pipe.as<ICallFactory>();

 winrt::check_hresult(factory->CreateCall(

 __uuidof(::AsyncIPipeByte), nullptr,

 __uuidof(::AsyncIPipeByte),

 reinterpret_cast<::IUnknown**>(call.put())));

 printf("Beginning the Pull\n");

 winrt::check_hresult(call->Begin_Pull(100));

 printf("Doing something else for a while...\n");

 auto sync = call.as<::ISynchronize>();

 while (sync->Wait(COWAIT_DEFAULT, 0) == RPC_S_CALLPENDING) {

 printf("Doing important stuff...\n");

 Sleep(250);

 }

 printf("Getting the answer\n");

 BYTE buffer[100];

 ULONG actual;

 winrt::check_hresult(call->Finish_Pull(buffer, &actual));

 printf("Pulled %lu bytes\n", actual);

 return 0;

}

The previous program did some fixed amount of work before waiting for the answer. But this

version busies itself with important work as long as the operation is not yet complete.

So far, all of our calls to the slow pipe object have been to a thread that is still responsive.

Next time, we’ll look at how to initiate asynchronous operations and avoid blocking if the

server thread is hung.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

