
1/5

February 14, 2022

COM asynchronous interfaces, part 1: The basic pattern
devblogs.microsoft.com/oldnewthing/20220214-44

Raymond Chen

You can mark your marshaled COM interfaces as supporting asynchronous calls, which

unlocks a brand new calling pattern. When you attach the async_uuid attribute to your

interface, COM generates a parallel interface with the same name as the synchronous

interface, but with the Async prefix. For example, the asynchronous partner of IMumble is

AsyncIMumble . (This is an exception to the general rule that COM interface begin with the

letter “I”.)

For each method on the synchronous interface, COM creates two methods on the

asynchronous interface: Begin_MethodName and Finish_MethodName . The parameters

to the Begin_MethodName method are all of the [in] parameters of the original method,

and the parameters to the Finish_MethodName method are all of the [out] parameters.

A parameter that is annotated as [in, out] shows up in both methods.

The general pattern for making an asynchronous call is

Query the proxy for ICallFactory .

Call ICallFactory::CreateCall with the asynchronous interface you want to call.

This produces a call object.

Call the Begin_MethodName method on the call object.

Go do something else for a while, if you like.

Optionally, check in on the progress of the asynchronous operation by calling

ISynchronize::Wait on the call object.

Call the Finish_MethodName method to wait for the call to complete and get the

results.

Today, we’ll kick the tires a bit. In future articles, we’ll try out some variations, finishing with

a practical application of asynchronous calls that you can use even if your interface isn’t

marked as asynchronous.

Today’s smart pointer library is (rolls dice)¹ C++/WinRT.

https://devblogs.microsoft.com/oldnewthing/20220214-44/?p=106251
https://docs.microsoft.com/en-us/windows/win32/midl/async-uuid

2/5

#include <windows.h>

#include <stdio.h> // Horrors! Mixing C and C++!

struct SlowPipe :

 winrt::implements<SlowPipe, ::IPipeByte, winrt::non_agile>

{

 // exit the STA thread when we destruct

 ~SlowPipe() { PostQuitMessage(0); }

 STDMETHODIMP Pull(BYTE* buffer, ULONG size, ULONG* written)

 {

 printf("Pulling %lu bytes...\n", size);

 ULONG index;

 for (index = 0; index < size / 2; index++) {

 Sleep(100);

 buffer[index] = 42;

 printf("Pulled byte %lu of %lu\n", index, size);

 }

 *written = index;

 printf("Finished pulling %lu% of %lu bytes\n", index, size);

 return S_OK;

 }

 STDMETHODIMP Push(BYTE* buffer, ULONG size)

 {

 printf("Pushing %lu bytes...\n", size);

 ULONG index;

 for (index = 0; index < size; index++) {

 Sleep(100);

 printf("Pushed byte %08x\n", buffer[index]);

 }

 printf("Finished pushing %lu bytes\n", size);

 return S_OK;

 }

};

Our SlowPipe object is a pipe that is slow, taking 100ms for each byte. C++/WinRT objects

are agile by default, but we mark ours as winrt::not_agile to override this, thereby

forcing the interface to be marshaled through a proxy. Just for fun, our Pull method pulls

only half of the bytes requested.

Let’s create a thread that hosts our SlowPipe object.

3/5

struct CreateSlowPipeInfo

{

 winrt::agile_ref<::IPipeByte> agile;

 bool ready = false;

};

DWORD CALLBACK ThreadProc(void* p)

{

 winrt::init_apartment(winrt::apartment_type::single_threaded);

 auto& info = *reinterpret_cast<CreateSlowPipeInfo>(p);

 info.agile = winrt::make<SlowPipe>();

 info.ready = true;

 WakeByAddressSingle(&info.ready);

 MSG msg;

 while (GetMessage(&msg, nullptr, 0, 0)) {

 TranslateMessage(&msg);

 DispatchMessageW(&msg);

 }

 winrt::uninit_apartment();

 return 0;

}

The thread is given a pointer to a CreateSlowPipeInfo structure. We initialize COM in

single-threaded mode on the thread, create a SlowPipe object, and store an agile reference

to that object in the thread creator-provided structure. We then let the thread creator know

that the agile reference is ready. And then we process messages until we get a quit message,

which will happen when the SlowPipe is destructed.

So let’s write the code that creates the thread and gets the SlowPipe from that thread.

winrt::com_ptr<::IPipeByte> CreateSlowPipeOnOtherThread()

{

 CreateSlowPipeInfo info;

 auto nope = info.ready;

 DWORD id;

 winrt::handle(winrt::check_pointer(

 CreateThread(0, 0, ThreadProc, &info, 0, &id)));

 while (!info.ready) {

 WaitOnAddress(&info.ready, &nope, sizeof(nope), INFINITE);

 }

 return info.agile.get();

}

4/5

We create the thread with the CreateSlowPipeInfo and wait for it to signal that it’s ready,

at which point we convert the agile reference to a com_ptr<IPipeByte> so we can use it

locally.

Okay, now on to the main event:

int main(int, char**)

{

 winrt::init_apartment(winrt::apartment_type::multi_threaded);

 auto pipe = CreateSlowPipeOnOtherThread();

 winrt::com_ptr<::AsyncIPipeByte> call;

 auto factory = pipe.as<ICallFactory>();

 winrt::check_hresult(factory->CreateCall(

 __uuidof(::AsyncIPipeByte), nullptr,

 __uuidof(::AsyncIPipeByte),

 reinterpret_cast<::IUnknown**>(call.put())));

 printf("Beginning the Pull\n");

 winrt::check_hresult(call->Begin_Pull(100));

 printf("Doing something else for a while...\n");

 Sleep(100);

 printf("Getting the answer\n");

 BYTE buffer[100];

 ULONG actual;

 winrt::check_hresult(call->Finish_Pull(buffer, &actual));

 printf("Pulled %lu bytes\n", actual);

 return 0;

}

Once we create the pipe on another thread and marshal it back to the main thread, we make

an asynchronous call to the Pull method.

First step: Get the factory, which we do by querying the proxy for ICallFactory .

Second step: Create a new call. The parameters to CreateCall take a little time to get used

to.

First is the asynchronous interface you want to call.

Second is the controlling unknown. You usually pass nullptr here, but we’ll see later

how you can replace this to get special effects.

Third and fourth are the usual pair of an interface ID and an output pointer. Somewhat

cumbersome here is that the final parameter is typed as IUnknown** rather than the

traditional void** , which means you can’t use the usual IID_PPV_ARGS pattern.

5/5

The call object itself supports the following interfaces:

IUnknown because all COM objects support IUnknown .

AsyncIMumble , the asynchronous interface you are calling.

ISynchronize , which we’ll learn about later.

ISynchronizeHandle , which we’ll learn about later.

ICancelMethodCalls , which we’ll learn about later.

IClientSecurity , which you can use to customize the security of the marshaled call.

I’m not going to go into this part.

You definitely are going to need the AsyncIMumble , seeing as that’s how you’re going to

make the asynchronous call in the first place. The other interfaces might or might not be

useful, depending on the scenario.

We call the Begin_Pull method with the input parameters to initiate the pull operation.

This call goes out to the helper thread, but since we are calling asynchronously, the call to

Begin_Pull returns immediately, while the call gets delivered to the other thread for

execution.

We pretend to do some other work for a while, and then come back and call Finish_Pull

method to get the answer. This is a blocking call that waits for the operation to complete, and

then propagates the unmarshaled output parameters and HRESULT .

That’s the basics of COM asynchronous calls. Next time, we’ll start getting a little fancier.

¹ The dice are loaded.

Raymond Chen

Follow

https://docs.microsoft.com/en-us/windows/win32/com/client-security-during-an-asynchronous-call
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

