
1/3

February 10, 2022

Notes on COM aggregation: Obtaining a pointer to your
aggregated partner without introducing a reference cycle

devblogs.microsoft.com/oldnewthing/20220210-00

Raymond Chen

COM aggregation allows multiple objects to work together so that they appear to be a single

object. It is one of those advanced topics most people never deal with. It just works invisibly.

There are many other write-ups of COM aggregation, so I’ll leave you to learn the basics

somewhere else. The short version is that the two parties in COM aggregation are informally

called the outer and inner objects. The object that is being aggregated is the inner object, and

the object that is doing the aggregating is the outer object. The outer object formally goes by

the name controlling unknown, a name with a rather nefarious secret-society ring that has

not gone unnoticed.

Most of the responsibility for making aggregation work lies on the inner object. The inner

object exposes a special non-delegating IUnknown to the outer object. This non-delegating

IUnknown is a “for your eyes only” interface exclusively for the outer object. It is how the

outer object accesses the interfaces of the inner object. The non-delegating IUnknown goes

like this:

QueryInterface for IUnknown : Return the non-delegating IUnknown and call its

AddRef (which we will see below increments the reference count of the inner object).

QueryInterface for anything else: Obtain an interface (if supported) from the inner

object as a delegating interface (see below), and call the delegating interface’s AddRef .

(As we’ll see below, this delegating AddRef increments the reference count of the

outer object.)

AddRef: Increment the reference count of the inner object.

Release: Decrement the reference count of the inner object, and destroy the inner

object if the reference count is zero.

Whenever the inner object hands out a non- IUnknown interface from its non-delegating

QueryInterface, the IUnknown methods on the resulting interface are delegating:

QueryInterface: Forward to the outer object.

AddRef: Forward to the outer object.

https://devblogs.microsoft.com/oldnewthing/20220210-00/?p=106243
https://members.tripod.com/~Diogenes_MacLugh/BGIlluminati.html

2/3

Release: Forward to the outer object.

It is this forwarding that makes the inner object appear to be part of the outer object.

Whenever anybody (other than the outer object) asks for information about the inner object,

the request is always forwarded to the outer object for consistent handling.

The outer object’s QueryInterface method will look at the interface being requested and

classify it in one of three buckets:

Handled by the outer object: Return a pointer to the outer object’s interface and

increment the reference count of the outer object.

Handled by the inner object: Query the non-delegating inner object for the requested

interface. This will also increment the reference count of the outer object.

Handled by neither: Fail.

If the outer object needs to obtain an interface from the inner object temporarily, it can query

the inner object for that interface (which will increment the outer object’s reference count),

use the interface, and then release it (which will decrement the outer object’s reference

count). At the end of the sequence, everything has returned to normal.

Things get weird if the outer object wants to obtain an interface from the inner object for an

extended period of time. This is common if the outer object intends to use the interface a lot,

so it wants to query once and just cache the result. If it followed the “temporary” usage

pattern above, it would end up with a reference cycle: Querying the inner object for the

interface increments the outer object’s reference count, so the object is indirectly holding a

reference to itself, which means that the object will never destruct, even if all external clients

release their references.

The fact that you have a circular reference is more obvious if you remember that the point of

aggregation is to make two objects appear to be one, so what the outer object did was query

itself for the interface, which naturally creates a reference cycle.

In order to break this reference cycle, you need to perform an artificial Release on the

outer object to make the net change zero.

When you want to clean up that secret internal reference, you need to perform the steps in

reverse: AddRef the outer object, and then Release the inner interface. This part of the

trick requires the outer object to set an artificial reference count during destruction to avoid

accidental double-destruction.

This same logic works in the other direction, too: The inner object can query its outer for an

interface to use temporarily, releasing it when finished. If the inner object wants to query its

outer for an interface and cache it, then it needs to perform a Release on the outer object

https://devblogs.microsoft.com/oldnewthing/20050928-10/?p=34013

3/3

(not on the queried interface) to counteract the reference count increment that resulted from

the QueryInterface . When releasing the interface, the same reversal algorithm applies:

AddRef the outer object and then release the queried interface.

The code sequence therefore goes like this:

// outer querying inner and caching the result

if (SUCCEEDED(m_inner->QueryInterface(IID_PPV_ARGS(&m_cachedInner))) {

 this->Release();

}

// outer releasing cached inner interface

this->AddRef();

m_cachedInner->Release();

// inner querying outer and caching the result

if (SUCCEEDED(m_outer->QueryInterface(IID_PPV_ARGS(&m_cachedOuter))) {

 m_outer->Release();

}

// inner releasing cached outer interface

m_outer->AddRef();

m_cachedOuter->Release();

This all looks great and seems to work, until you realize that there’s a corner case you missed:

Tear-offs.

We’ll look more closely at the interaction between aggregation and tear-offs next time.

Bonus chatter: Weak QueryInterface in COM aggregation was the topic I was referring

to when I mentioned that Don Box told me that it was too advanced even for his advanced

book on COM.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20090211-00/?p=19193
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

