
1/3

February 4, 2022

The case of the stack overflow exception when the stack
is nowhere near overflowing

devblogs.microsoft.com/oldnewthing/20220204-00

Raymond Chen

A customer was confused by crash dumps that showed their program crashing with a stack

overflow exception even though inspection of the stack showed that the program hadn’t used

anywhere near 1MB of stack. One megabyte is the default stack size, so why did the program

encounter a stack overflow when there was still plenty of room?

One thing to check is whether the stack really is one megabyte in size. You can do this by

inspecting the stack limits in the TEB.¹ The default stack size is determined by the value of

SizeOfStackReserve in the PE header, and if you don’t customize it, the linker defaults to

one megabyte. You can also pass a custom stack size to the CreateThread to create a

thread with a specific stack size. You can read more details on docs.microsoft.com.

In this case, the program did not create any threads with custom stack sizes, and the default

stack reserve was still at the default of one megabyte. So it’s not the case that the program

was running on an artificially small stack.

Another possibility is that the system ran out of memory. Even though a megabyte of

memory is reserved for the stack, the memory is allocated only on demand, as we learned last

time when we took a closer look at the stack guard page. If the system cannot allocate

memory to replace the guard page, then you get a stack overflow exception.

The customer used the .dumpdebug command in the debugger to look at the memory usage

and other statistics that were captured when the dump was created. Their executable ran as

part of a job object, so the numbers to look at are the JobPrivateCommitUsage, JobPeak-

PrivateCommitUsage, and the JobPrivateCommitLmit. These numbers showed that the

commit usage and peak commit usage were nowhere near the commit limit, so the issue is

not that the process ran out of memory.

Maybe the problem is that a rogue pointer falsely triggered the guard page, causing it to turn

into a regular committed page and leaving the thread with no guard page. We can investigate

this possibility with the !address debugger command:

https://devblogs.microsoft.com/oldnewthing/20220204-00/?p=106219
https://docs.microsoft.com/en-us/windows/win32/procthread/thread-stack-size
https://devblogs.microsoft.com/oldnewthing/20220203-00/?p=106215

2/3

 BaseAddress EndAddress+1 RegionSize Type State
Protect Usage

+ 0`7ffe7000 7f`fa4d0000 7f`7a4e9000 MEM_FREE
PAGE_NOACCESS Free

+ 7f`fa4d0000 7f`fa53c000 0`0006c000 MEM_PRIVATE MEM_RESERVE
Stack [~0; 9024.9308]

 7f`fa53c000 7f`fa53f000 0`00003000 MEM_PRIVATE MEM_COMMIT
PAGE_READWRITE|PAGE_GUARD Stack [~0; 9024.9308]

 7f`fa53f000 7f`fa550000 0`00011000 MEM_PRIVATE MEM_COMMIT
PAGE_READWRITE Stack [~0; 9024.9308]

+ 7f`fa550000 7f`fa5bc000 0`0006c000 MEM_PRIVATE MEM_RESERVE
Stack [~1; 9024.8070]

 7f`fa5bc000 7f`fa5bf000 0`00003000 MEM_PRIVATE MEM_COMMIT
PAGE_READWRITE|PAGE_GUARD Stack [~1; 9024.8070]

 7f`fa5bf000 7f`fa5d0000 0`00011000 MEM_PRIVATE MEM_COMMIT
PAGE_READWRITE Stack [~1; 9024.8070]

+ 7f`fa5d0000 7f`fa600000 0`00030000 MEM_FREE
PAGE_NOACCESS Free

...

The unlabeled first column of the output is a + if this region is the start of an allocation.

Note that this listing is upside-down relative to the way we traditionally draw memory maps.

Memory maps are traditionally drawn with higher addresses at the top, but the !address

command lists the addresses in increasing order from top to bottom.

What we see here are two stacks from the process. The normal pattern for a stack is a single

allocation that consists of three parts:

A bunch of reserved memory, representing stack space that has yet to be used.

A guard region (PAGE_GUARD) that is used to detect stack growth.

A bunch of committed memory, representing stack memory already allocated.

We see that both of the above stacks fit this pattern:

The region at 7f`fa4d0000 is the start of an allocation, and it is marked MEM_

RESERVE .

The next region consists of three PAGE_GUARD pages, representing the guard region.

Finally, we have a bunch of regular PAGE_READWRITE pages, representing the stack in

use.

One thing I just learned from looking at this is that the guard page is no longer a single page,

like it was in the early days of Windows NT, but rather is a block of three pages. My guess is

that this was done to reduce the number of guard page exceptions.

3/3

If the leading MEM_RESERVE region is missing, then what happened is that you really did

run out of stack. You used up your entire stack allocation.

If the middle PAGE_GUARD region is missing, then what happened is that you lost the guard

region, perhaps due to a rogue pointer from another thread.

In the customer’s crash dump, the stacks for all threads looked good, except that the thread

which encountered the stack overflow itself did not have a stack guard region, even though it

still had a generous reserve. This would normally indicate that the guard region was lost.

However, it is expected to see this situation when a stack overflow is reported: The stack

overflow exception is raised as part of handling the guard page exception if a new guard

region cannot be allocated. You’re getting the exception either because the system cannot

create a new guard region, or because the old guard region got corrupted.

The customer did some more investigation on their side and discovered that even though

their process was running in a job with plenty of remaining memory, that job was itself

running inside another job that also had its own memory cap. Other sibling jobs had

consumed all the memory allotted to the parent job, causing their process to crash due to the

inability to allocate a new guard region.

So the initial theory was correct after all: The process ran out of memory. It just was due to

external factors that weren’t captured in the crash dump.

¹ A useful command is knf ² which asks for an attributed stack trace, where each frame is

annotated by its size in bytes. You can use this to find functions that have a lot of local

variables that are causing excessive stack consumption.

² An early version of the knf command went by the name stackpig because it dumped a

stack trace, annotating the size of the frame, and highlighting the large ones with the word

OINK.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

