
1/5

February 3, 2022

A closer look at the stack guard page
devblogs.microsoft.com/oldnewthing/20220203-00

Raymond Chen

In a discussion of why IsBadXxxPtr should really be called CrashProgramRandomly, I gave a

brief description of the stack guard page:

The dynamic growth of the stack is performed via guard pages: Just past the last valid page on
the stack is a guard page. When the stack grows into the guard page, a guard page exception is
raised, which the default exception handler handles by committing a new stack page and setting
the next page to be a guard page.

Let’s break this down a bit more.

Here’s a thread’s stack after the thread has been running for a little while. As is customary in

memory diagrams, higher addresses are at the top, which means that the stack grows

downward (toward lower addresses).

valid stack committed

 committed

 committed ← Stack pointer

 committed

 guard page

 reserved

 reserved

 reserved

The regular committed pages encompass all of the stack memory that the program has used

so far. It may not be using all of it right now: Any memory beyond the red zone is off limits to

the application. When the stack pointer recedes from its high water mark, the pages left

behind are not decommitted.

https://devblogs.microsoft.com/oldnewthing/20220203-00/?p=106215
https://devblogs.microsoft.com/oldnewthing/20060927-07/?p=29563
https://devblogs.microsoft.com/oldnewthing/20190111-00/?p=100685

2/5

The page just past the stack pointer’s high water mark is a special type of committed page

known as a guard page. A guard page is a page which raises a STATUS_GUARD_PAGE_

VIOLATION exception the first time it is accessed.

Suppose that the stack pointer moves into the guard page, indicating that the thread has

increased its stack requirements by one additional page.

valid stack committed

 committed

 committed

 committed

 guard page ← Stack pointer

 reserved

 reserved

 reserved

The moment the thread accesses memory from the guard page, the system converts it to a

regular committed page (removing the PAGE_GUARD flag) and raises a STATUS_GUARD_

PAGE_VIOLATION exception. The default exception handler deals with the exception by

looking to see if the address lies in the current stack’s guard page region. If so, then it

upgrades the next reserved page to a guard page, and then resumes execution:

 Before During After

valid
stack

 committed committed committed valid
stack

 committed committed committed

 committed committed committed

 committed committed committed

 guard
page

← Stack
pointer →

committed ← Stack
pointer →

committed

 reserved reserved guard
page

 reserved reserved reserved

3/5

 reserved reserved reserved

Clearing the PAGE_GUARD flag on an access to a guard page means that once you access it, it

stops being a guard page. This means that guard pages raise the guard page exception only

on first access. If you fail to take action on a guard page exception, the system ignores it, and

you lost your one chance to do something.

This is why our code to detect stack overflows makes sure to call _resetstkoflw() if it

decides to recover. Resetting the stack overflow state consists of turning the PAGE_GUARD

flag back on for the guard page, restoring the page to its former glory as a guard page so it

can do its job of detecting stack growth.

This is how things go when everything is working right. But things don’t always work right.

If one thread accesses another thread’s guard page, perhaps due to a buffer overflow, or just

an uninitialized pointer variable that happens to point there, that too will trigger the guard

page exception. That exception is raised by the thread that did the accessing, which is not the

thread that owns the stack. The default exception handler sees that the guard page exception

is not for the current thread’s stack, so it ignores it.¹

Congratulations, your stack is now corrupted, because the guard page is gone:

valid stack committed

 committed

 committed ← Stack pointer

 committed

 committed (oops)

 reserved

 reserved

 reserved

Things proceed normally for a while, until the thread’s stack needs to grow into what used to

be the guard page.

valid stack committed

 committed

https://devblogs.microsoft.com/oldnewthing/20200609-00/?p=103847

4/5

 committed

 committed

 committed ← Stack pointer (oops)

 reserved

 reserved

 reserved

Normally, this would trigger a guard page exception, and the system would do the usual thing

of upgrading the next reserved page to a new guard page. However, that page is no longer a

guard page, so execution just continues normally with no action taken.

Things still proceed as if everything were perfectly normal, but the consequences of your

misdeeds finally catch up to you when the stack pointer crosses into a second new page, the

first reserved page.

valid stack committed

 committed

 committed

 committed

 committed (oops)

 reserved ← Stack pointer (double oops)

 reserved

 reserved

This is also not a guard page, so no special stack expansion kicks in. You just get a stack

overflow exception and die.

Such is the sad life of invalid memory access. You can corrupt your own process in a subtle

way that doesn’t show up until much, much later.

Next time, we’ll investigate a stack overflow problem and learn how to detect whether this

guard page corruption has occurred.

5/5

¹ In theory, the default exception handler could search through all the threads in the process

and see if the address resides in a guard page of any thread, but it doesn’t. One reason is that

this would require cross-thread coordination with the thread whose guard page you

accidentally accessed, as well as any other thread that also might be accessing that guard

page at the same time. But the bigger reason is probably that the entire situation is a bug in

the program anyway, and there’s no point going out of your way to slow down the system in

order to deal with things that programs shouldn’t be doing anyway.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

