
1/3

February 2, 2022

Gotcha: C++/WinRT weak_ref.get() doesn’t get the weak
reference; it gets the strong reference

devblogs.microsoft.com/oldnewthing/20220202-00

Raymond Chen

If you have a winrt::com_ptr<T> , you can call the get() method to obtain the raw COM

pointer inside it. This is handy if you need to pass that raw pointer along to another method

that wants raw pointers.

The winrt::weak_ref<T> also has a get() method, but its behavior is different: It tries

to resolve the weak reference to a strong reference and returns that strong reference as a

com_ptr<T> . If it fails to resolve the weak reference to a strong reference, then it returns an

empty com_ptr<T> . (If T is a projected type, then the returned object is a T rather than

com_ptr<T> , since com_ptr<T> is redundant.)

I’ve seen this gotcha bite people who are familiar with com_ptr s, but haven’t worked much

with weak_ref . They have a weak_ref in their hand and they want to look at the pointer

inside it. They’ll call weak_ref.get() (because that’s what works for com_ptr), and not

only is that not what they want, the result can be downright dangerous.

weak_ref<T> saved_weak;

bool IsTheSavedWeakRef(weak_ref<T> const& ref)

{

 return saved_weak.get() == ref.get();

}

The idea here is that we want to compare the IWeakReference pointers hiding inside the

weak_ref to see if the weak reference passed in is the same one we had saved earlier.

Unfortunately, what actually happens is that we resolve both weak references to strong T

references, and then see if the strong references match.

The first bug is that this treats all broken weak references as equal, even if they aren’t the

same weak reference. Indeed, they may even have been obtained from different objects

entirely!

https://devblogs.microsoft.com/oldnewthing/20220202-00/?p=106213

2/3

The second bug is that the temporary materialization of a strong reference means that when

the function returns, those strong references are released, and that can result in object

destruction at a time you weren’t expecting. Suppose we initially have a strong reference to a

T in a variable called saved_strong and a weak reference to the same T in a variable

called saved_weak .

Thread 1 Thread 2 Refcount on T

IsTheSavedWeakRef() 1

saved_weak.get() 2

 saved_strong.reset() 1

temporary com_ptr destructs 0

Initially, there is one strong reference to the object, held in saved_strong . The IsThe‐

SavedWeakRef() function tries to promote the saved_weak to a strong reference in the

form of a com_ptr (say), and it succeeds. The number of strong references is now two.

Meanwhile, another thread resets the saved_strong strong reference, which would have

destructed the object if IsTheSavedWeakRef() hadn’t created a temporary strong

reference. Instead, the reset of saved_strong causes the reference count to drop to one.

Back on Thread 1, the IsTheSavedWeakRef() function finishes its comparison and

destructs the temporary shared_ptr , which drops the reference count to zero and destroys

the object.

The IsTheSavedWeakRef() function is destroying an object!

This can be quite a surprise to the authors of IsTheSavedWeakRef() , who thought they

were doing completely non-intrusive lightweight operations. In particular, the caller of Is‐

TheSavedWeakRef() might be holding a lock, such as one that is designed to protect access

to saved_weak .

Now you are in the world of destroying an object under a lock, and depending on how those

objects are structured, this could be harmless or create a potential deadlock or trigger

memory corruption due to unexpected reentrancy.

Bonus chatter: With PR#608, you can now compare weak references directly for equality,

so you aren’t tempted to try the get() trick.

Nevertheless, if you want to get the raw pointer inside a winrt::weak_ref , you can use

get_abi .

https://devblogs.microsoft.com/oldnewthing/20201111-00/?p=104439
https://github.com/microsoft/cppwinrt/pull/608

3/3

Bonus bonus chatter: The WIL library has its own quirk related to COM weak references

and COM agile references. The wil::com_weak_ref and wil::com_agile_ref act like a

wil::com_ptr in most respects, but the query and copy methods operate on the

underlying object, not the weak reference or agile reference itself.

For weak references, this is normally what you want, since there isn’t much you can query

from a weak reference. However, if you have a weak reference to a remote object, you may

want to query the weak reference for interfaces like IMarshal or IClientSecurity , and

those queries will go not to the weak reference but to the underlying object.

If you want to perform the query against the weak reference itself, you will have to use a Jedi

mind trick to make WIL forget that the pointer was ever a weak pointer: Decay it back to the

IUnknown , and then operate on that.

// marshal = saved_weak.query<IMarshal>(); // doesn't work, do this instead

auto marshal = wil::com_query<IMarshal>(static_cast<IUnknown*>(saved_weak.get()));

Here, we use the free com_query function which does the equivalent of a com_ptr.query ,

but as a free function instead of requiring a com_ptr in hand.

(Personally, I think this magic behavior of weak and agile references is a pit of failure. I think

the methods should have been called lock or resolve . Reserve get for extracting the

raw ABI pointer.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

