
1/2

January 28, 2022

How can I recognize whether two handles refer to the
same underlying file?

devblogs.microsoft.com/oldnewthing/20220128-00

Raymond Chen

Last time, we learned how to recognize file systems that don’t support 64-bit unique file

identifiers. But what do you do want to detect whether two handles refer to the same

underlying file, and the file system won’t give you 64-bit unique file identifiers?

The first step is to compare the volume serial numbers. If they are different, then stop. The

files belong to different volumes.

If the volume serial numbers match, then use the GetFileInformationByHandleEx

function and ask for the FileIdInfo . This will give you the 128-bit file identifier. If you can

get the 128-bit file identifier, then compare them. (NTFS uses 64-bit file identifiers, but it will

return them as a 128-bit value if you ask for one.)

If the volume doesn’t support 128-bit file identifiers, then maybe it’s an older file system that

doesn’t understand the “Please give me the 128-bit file identifier” function, so try again with

the GetFileInformationByHandle and compare the 64-bit file identifiers, provided they

aren’t zero or 0xFFFFFFFF`FFFFFFFF .

If the volume doesn’t support 64-bit identifiers either, then the situation is getting kind of

desperate. My colleague Malcolm Smith suggests calling GetFinalPathNameByHandle with

FILE_NAME_NORMALIZED to try to get the file names into some sort of sane state, and

then comparing the names.

This last step isn’t foolproof, because it will be faked out by hard links, but it’s probably the

best you can do under the circumstances. Let’s hope that the remote file systems which don’t

support unique identifiers don’t support hard links either.

Bonus chatter: The SMB protocol (also known as CIFS) can get into a situation where a

single share maps to multiple file systems, which means that the unique identifier is itself

just an approximation. If two underlying file systems both use the same unique identifier for

different files, then the unique identifier sent over the network via SMB will not actually be

unique. But it’s trying the best it can under the circumstances.¹

https://devblogs.microsoft.com/oldnewthing/20220128-00/?p=106201
https://devblogs.microsoft.com/oldnewthing/20220127-00/?p=106199

2/2

¹ This also explains why you might not see the FILE_SUPPORTS_OPEN_BY_FILE_ID flag

on remote volumes. If the underlying volume is multiplexing multiple underlying file

systems, then it won’t be able to redeem those file IDs for files, since it doesn’t know which

file system each ID came from. (I guess it could just try them all, but that would defeat the

purpose of striping the storage.)

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

