
1/4

January 11, 2022

Jumping into the middle of an instruction is not as
strange as it sounds

devblogs.microsoft.com/oldnewthing/20220111-00

Raymond Chen

Reuben Harris and Monte Davidoff spent time disassembling Bill Gates’s original Altair

BASIC. In an interview with The Register, Harris was impressed with the code, noting with

some admiration, “I found a jump instruction that jumped to the middle of another

instruction.”¹

You can find the targets of those jumps in the error handling code: Search for “Three

common errors.”

The trick here is that the 8080 uses variable-length instructions. The instruction sequence in

question goes like this:

01CD 1E0C OutOfMemory: MVI E,0C

01CF 01 LXI B,....

01D0 1E02 SyntaxError: MVI E,02

01D2 01 LXI B,....

01D3 1E14 DivideByZero: MVI E,14

The 8080 processor has 8-bit registers named A , B , C , D , E , H , and L . Six of these

registers can be paired up to create 16-bit pseudo-registers: BC , DE and HL .

The load extended immediate LXI instruction is a three-byte instruction which loads a 16-

bit immediate value into a register pair. The first byte specifies the opcode and the

destination register pair (in the above example, the BC register pair), and the second and

third bytes form the 16-bit immediate.

The move immediate MVI instruction is a two-byte instruction which loads an 8-bit

immediate value into a single 8-bit register. The first byte specifies the opcode and the

destination register (in the above example, the E register), and the second byte is the 8-bit

immediate.

Let’s write out the byte stream that results from jumping to the three labels:

https://devblogs.microsoft.com/oldnewthing/20220111-00/?p=106144
http://altairbasic.org/
https://www.theregister.com/2001/05/15/could_bill_gates_write_code/
http://altairbasic.org/int_dis_4.htm

2/4

Address Code byte JMP
OutOfMemory

JMP
SyntaxError

JMP
DivideByZero

01CD 1E MVI E,0C

01CE 0C

01CF 01 LXI B,021E

01D0 1E MVI E,02

01D1 02

01D2 01 LXI B,141E LXI B,141E

01D3 1E MVI E,14

01D4 14

If you jump to 01CD , then the CPU performs a MVI E,0C , and then it interprets the 01 as

the start of an LXI B instruction, and the next two bytes are treated as the 16-bit immediate

operand. On the other hand, if you jump to 01D0 , then the bytes that used to be the 16-bit

immediate operand of the LXI B instruction are now treated as an MVI E,02 instruction.

You see the same thing happen at 01D3 , which hides a two-byte instruction inside the 16-bit

immediate operand of another LXI B instruction. If instruction falls through from above,

then the CPU executes an LXI B,141E , but if you jump directly to 1D3 , then the CPU

executes a MVI E,14 .

In both cases, the LXI B is just a garbage instruction. It loads some nonsense value into the

BC register pair. The code doesn’t care; that register wasn’t holding anything useful anyway.

The purpose of the instruction is to soak up the next two bytes and prevent them from being

treated as another instruction.

Harris expressed some surprise at finding this, but really, it is a pretty common trick when

hand-writing assembly for processors with variable-length instructions: If you want to hide a

1-byte instruction, look for another instruction with a 1-byte immediate, and hide the

instruction in the immediate. If you want to hide a 2-byte instruction, hide it inside an

instruction with a 2-byte immediate.

The “cloaking” instruction should do something harmless. Instructions like “compare with

immediate” work great, since they typically affect only flags, and most of the time, there’s

nothing interesting in the flags anyway. However, the 8080 does not have a “compare with

16-bit immediate” instruction, so we have to make do with “load 16-bit immediate” into a

register we don’t care about.

3/4

On the 6502, the typical instruction for soaking up one or two bytes is the bit test BIT

instruction. The argument is the address of the memory to test (either a 1-byte zero page

address or a 2-byte absolute address), and the rest of the test goes into the flags register.

Executing a garbage BIT instruction therefore reads a byte from some garbage memory

location and then sets flags according to the value read. If the flags are subsequently ignored,

then this is basically a three-byte NOP .

Microsoft 6502 BASIC had a special macro SKIP2 for generating the first byte of the BIT

instruction.

This hacky usage of the BIT instruction is arguably more popular than its designed purpose

as a bit-testing instruction!² (Related: The hunt for a faster syscall trap.)

One thing to watch out for is that the CPU does perform a load from the memory address that

is the argument to the BIT instruction, so make sure that the two bytes, when reinterpreted

as an address, don’t produce an address in an I/O-mapped region. Otherwise, you’ll be

issuing inadvertent hardware commands. (The 6502 has no memory manager, so you don’t

have to worry about access violations.)

The trick of “soaking up” bytes to generate multiple entry points to a function was employed

in 16-bit Windows. For example, you had this sequence:

DelAtom:

 mov cl, 2

 db 0BBh ; mov bx, imm16

AddAtom:

 mov cl, 1

 db 0BBh ; mov bx, imm16

FindAtom:

 mov cl, 0

 db 0BBh ; mov bx, imm16

The three functions all have the same parameters, and they share a lot of code, so the entry

points merely set up a function code in the cl register and all fall through to a common

implementation.

So, yeah, jumping into the middle of an instruction. It’s a cool trick, but it’s not novel. It was

rather commonly employed in the early days of personal computing.

¹ For some reason, that quotation has made its way into online dictionaries as a citation for

jump instruction.

² If you’ve done significant work on the 6502, the machine code for this instruction (2C) is

probably burned into your brain.

Raymond Chen

https://www.pagetable.com/?p=774
https://retrocomputing.stackexchange.com/a/11132
https://devblogs.microsoft.com/oldnewthing/20041215-00/?p=37003
https://www.lexico.com/definition/jump_instruction
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

Follow

