
1/2

January 10, 2022

How can I detect that a thread pool work item is taking
too long?

devblogs.microsoft.com/oldnewthing/20220110-00

Raymond Chen

A customer wants to detect that their thread pool work items are not completing quickly

enough and trigger a crash if they appear to be stuck. They looked at WaitForThreadpool‐

WaitCallbacks , but that function doesn’t support a timeout. It just waits indefinitely. Is

there a way to wait with a timeout?

Even though there is no way to wait with a timeout, it turns out that in this particular case,

we don’t need one. Since all we want to do is crash, it doesn’t matter who does the crashing!

Create a watchdog timeout that triggers after a timeout.

Call WaitForThreadpoolWaitCallbacks .

Cancel the watchdog timer.

If the watchdog timer fires, then the WaitForThreadpoolWaitCallbacks got stuck, and the

watchdog timer handler can log the failure or trigger the crash.

Now, if you want a way to abandon the wait and keep running, then you can roll that

yourself: You can associate an event (possibly a lightweight one you can use with WaitOn‐

Address), and you can wait for the event with a timeout. Meanwhile, when the work item is

finished, the last thing it does is signal the event.

Bonus chatter: There is a SetEventWhenCallbackReturns function which tells the thread

pool to set an event when the callback returns. However, an RAII class will do the job nicely

in this case, and the RAII class will let you use a lighter-weight synchronization object. The

SetEventWhenCallbackReturns function’s primary purpose is to allow you to know when

it’s safe to unload the code running the callback, because the event is set after control has left

the callback.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/20220110-00/?p=106139
https://docs.microsoft.com/en-us/windows/win32/api/threadpoolapiset/nf-threadpoolapiset-seteventwhencallbackreturns
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

2/2

