
1/2

January 7, 2022

How do I upgrade a 32-bit tick count to a 64-bit one?
devblogs.microsoft.com/oldnewthing/20220107-00

Raymond Chen

There are a number of Windows functions that produce 32-bit tick counts, like

GetMessageTime . But you may have a general policy in your program of always working

with 64-bit tick counts to avoid timer rollover problems. How can you upgrade these to 64-

bit tick counts?

Well, clearly, the 32-bit timestamp is ambiguous, since the 32-bit timer rolls over every 49

days (approximately). But there is only one point within the previous 49 days that has the

specified 32-bit timestamp. It is probably a reasonable assumption that the timestamp refers

to something that occurred within the past 49 days, because most of these system-provided

timestamps are reporting the time at which something occurred in the recent past, like the

time the message or input was generated prior to delivery. In practice, the timestamp age will

be on the order of tens of milliseconds, maybe a few seconds if your program is having a bad

day. A delay of over 49 days is extremely unlikely.

All we have to do is reconstruct the upper 32 bits of the timestamp.

uint64_t UpgradeTickCount(uint32_t then, uint64_t now)

{

 auto diff = static_cast<uint32_t>(now) - then;

 return now - diff;

}

First, we calculate the 32-bit elapsed time between the provided timestamp and the current

time. This works even in the face of timer rollover thanks to unsigned integer arithmetic,

which is modulo 2³² for uint32_t .

Now we know how long ago the 32-bit timestamp was, assuming it represents a time at most

49 days in the past. We can then apply that same adjustment to the current 64-bit time to

obtain a full 64-bit timestamp.

The value for now need not be the current time. It just needs to be any 64-bit time value

that is at or later than the then value.

https://devblogs.microsoft.com/oldnewthing/20220107-00/?p=106130

2/2

Now, there are some functions that report the most recent time an event occurred, and it’s

possible that those events are extremely rare. For example, the GetLastInputInfo

function tells you the last time the system received input, but a server in a closet might go for

an extended period without receiving any input.

What you can do is establish a baseline by querying the timestamp and immediately

upgrading it to a 64-bit timestamp. (You have no way of knowing whether that timestamp is

less than 49 days old, so you may as well assume that it is.) Each time you want to upgrade a

new timestamp, you check whether it is the same as the previous 32-bit timestamp: If so,

then assume it’s the same old timestamp. If not, then assume that the new event occurred

within the past 49 days. If you perform this check at least once every 49 days (pretty easy to

arrange), then that will be a valid assumption.

uint64_t UpgradeTickCount2(uint32_t then, uint64_t previous, uint64_t now)

{

 if (static_cast<uint32_t>(then) == static_cast<uint32_t>(previous)) {

 return previous;

 } else {

 return UpgradeTickCount(then, now);

 }

}

Still, to get to 49 days, it means you’re not applying monthly security updates like some sort

of monster who welcomes your new botnet overlords. But at least you got timestamps.

Raymond Chen

Follow

https://knowyourmeme.com/memes/i-for-one-welcome-our-new-insect-overlords
https://en.wikipedia.org/wiki/Leeroy_Jenkins
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

