
1/2

December 16, 2021

Why does the precise point at which I get a stack
overflow exception change from run to run?

devblogs.microsoft.com/oldnewthing/20211216-00

Raymond Chen

Consider this program:

#include <stdio.h>

int maxdepth = 0;

int f()

{

 ++maxdepth;

 return f();

}

int main()

{

 __try {

 f();

 } __except (GetExceptionCode() == STATUS_STACK_OVERFLOW ?

 EXCEPTION_EXECUTE_HANDLER :

 EXCEPTION_CONTINUE_SEARCH) {

 printf("Overflow at %u\n", maxdepth);

 }

}

Make sure to compile this program with optimizations disabled to ensure that the recursive

call occupies stack and doesn’t get tail-call-optimized.

When I run this program multiple times, the results are inconsistent.

https://devblogs.microsoft.com/oldnewthing/20211216-00/?p=106038

2/2

Overflow at 4882

Overflow at 4877

Overflow at 4879

Overflow at 4884

Overflow at 4877

Overflow at 4883

Overflow at 4882

Overflow at 4881

Overflow at 4879

Overflow at 4882

This program is completely deterministic. Why does the overflow happen at different stack

depths? In other words, why does the size of the stack vary?

The variation in the stack size is thanks to Address Space Layout Randomization, or ASLR.

The system places the initial stack pointer at a random location in the last page of the stack,

thereby randomizing the low-order bits and reducing stack predictability.

It also has a secondary benefit of reducing collisions in caches that are indexed by virtual

address. For example, the internal tables used by WaitOnAddress use the address of a

stack-allocated object as a key in a hash table to keep track of all the threads that are waiting

on an address. Randomizing the initial stack location means that if you have multiple threads

running the same code, their stack-allocated objects won’t have similar addresses.

Today, we looked at where the stack starts. Next time, we’ll look at where the stack ends.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

