It’'s okay to be contrary, but you need to be consistently
contrary: Going against the ambient character set

=. devblogs.microsoft.com/oldnewthing/20211210-00

December 10, 2021

-
Raymond Chen

In Windows, you declare your character set preference implicitly by defining or not defining
the symbol UNICODE before including the windows.h header file. (Related: TEXT vs. TEXT
vs. T, and UNICODE vs. UNICODE.) This determines whether undecorated function
names redirect to the ANSI version or the Unicode version, but it doesn’t make the opposite-
version inaccessible. You just have to call them by their explicit names. And it’s important

that you be consistent about it. If you miss a spot, the characters get all messed up.

// UNICODE not defined
#include <windows.h>

void UpdateTitle(HWND hwnd, PCWSTR title)

{
SetWindowTextW(hwnd, title);

}

In the above example, we did not define the symbol UNICODE , sothe ambient character set
is ANSI. Since we want to call the Unicode version of SetWindowText , we must use its
explicit Unicode name SetWindowTextW .

Most of the time, these errors are detected at compile time due to type mismatches. For
example, if we forgot to put the trailing W on the function name, we would get the error

error C2664: 'BOOL SetWindowTextA(HWND,const char *)': cannot convert argument 2 from
'const wchar_t *' to 'const char *'

note: Types pointed to are unrelated; conversion requires reinterpret_cast, C-style
cast or function-style cast

And that’s your clue that you forgot to W-ize the SetwindowText call. You should have
called the W version explicitly: SetwindowTextWw .

However, there’s a category of functions that elude this compile-time detection: The

functions that have separate ANSI and Unicode versions but take only character-set-

independent parameters. Common examples are DispatchMessage , TranslateMessage ,
TranslateAccelerator , CreateAcceleratorTable , and most notably, DefWindowProc.

1/2


https://devblogs.microsoft.com/oldnewthing/20211210-00/?p=106021
https://devblogs.microsoft.com/oldnewthing/20211209-00/?p=106017
https://devblogs.microsoft.com/oldnewthing/20040212-00/?p=40643
https://devblogs.microsoft.com/oldnewthing/20181101-00/?p=100105
https://devblogs.microsoft.com/oldnewthing/20190110-00/?p=100675

For some reason, when I get called in to investigate this sort of problem, it’s usually the Def -

windowProc that is the source of the problem.

But I don’t think it’s because people get the others right and miss the DefwindowProc .1
think it’s because the mistakes in the other functions are much less noticeable. The mistakes
are still there, and maybe you’ll get a bug report from a user in Japan when they run into it,
but that’s not something that is going to be noticed in English-based testing as much as a
string that is truncated down to its first letter.

Raymond Chen

Follow

2/2


https://devblogs.microsoft.com/oldnewthing/20191030-00/?p=103036
https://devblogs.microsoft.com/oldnewthing/20180207-00/?p=97985
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

