How do | pass an array of variable-sized
PROPSHEETPAGE structures to PropertySheet?

=. devblogs.microsoft.com/oldnewthing/20211125-00

November 25, 2021

Raymond Chen

Last time, we noted that you can add your own custom data to the end of the PROPSHEETPAGE,
and if you set the dwSize to include the custom data, then the system will copy that custom
data into the HPROPSHEETPAGE .

This technique comes in handy if you need to create a property sheet page with Create-
PropSheetPage , since it gives you a way to store more data than just the single 1Param

that comes with the PROPSHEETPAGE structure.

When you fill out a PROPSHEETHEADER structure, you can choose whether you're passing an

array of HPROPSHEETPAGE handles (created by CreatePropSheetPage ) or an array of
PROPSHEETPAGE structures. Passing an array of HPROPSHEETPAGE handles isn’t a problem,

since all HPROPSHEETPAGE handles are the same size, regardless of the size of the
PROPSHEETPAGE lurking inside them. But passing an array of variable-sized
PROPSHEETPAGE structures is a trickier business.

What we want to do is lay out the memory like this:

pagel.dwSize PROPSHEETPAGE dwSize
dwFlags

1Param

page1
extra
data

page2.dwSize PROPSHEETPAGE dwSize
dwFlags

1Param

1/5


https://devblogs.microsoft.com/oldnewthing/20211125-00/?p=105967
https://devblogs.microsoft.com/oldnewthing/20211124-00/?p=105961

page2
extra
data

page3.dwSize

PROPSHEETPAGE

dwSize

_dwFlags

1Param

We can do this by manufacturing a structure to hold the three extended PROPSHEETPAGE

structures.

struct ThreePages

{
PagelData pagel;
Page2Data page2;
Page3Data pages3;
}

ThreePages pages;

The naive say of setting the dwSize
corresponding structure.

pages.pagel.dwSize
pages.page2.dwSize =
pages.page3.dwSize

This assumes that the three structures can be laid out next to each other without any inter-
member padding. But that may not be true if the structures have different alignment

sizeof (pages
sizeof (pages
sizeof(pages

page3
extra
data

members is to set each one to the size of the

.pagel);
-page2);
.paged);

requirements, say, if one of them containsa _ mii12s .

sizeof(pagel)

PROPSHEETPAGE

dwSize
_dwFlags

1Param

page1
extra
data

oops

(padding?)

2/5



sizeof(page2) PROPSHEETPAGE dwSize
dwFlags

1Param

page2
extra
data

oops (padding?)

sizeof(page3) PROPSHEETPAGE dwSize
dwFlags

1Param

page3
extra
data

(padding?)

In the presence of padding, we have a shortfall between the size of each page and the start of
the next page, resulting in an “oops” gap highlighted above.

In order to accommodate varying alignment requirements, the dwSize must include the
padding so that the property sheet manager can find the next structure.! I've marked some
key addresses in the diagram below:

pagel.dwSize PROPSHEETPAGE dwSize «— &pagel
dwFlags

1Param

page1
extra
data

(padding?)

page2.dwSize PROPSHEETPAGE dwSize «— &page2
dwFlags

1Param

3/5



page2
extra
data

page3.dwSize PROPSHEETPAGE dwSize «— &page3
dwFlags

1Param

page3
extra
data

«— &pages + 1

pages.pagel.dwSize = static_cast<DWORD>(
reinterpret_cast<DWORD_PTR>(std::addressof(pages.page2)) -
reinterpret_cast<DWORD_PTR>(std: :addressof(pages.pagel)));

pages.page2.dwSize = static_cast<DWORD>(
reinterpret_cast<DWORD_PTR>(std::addressof(pages.page3)) -
reinterpret_cast<DWORD_PTR>(std::addressof(pages.page2)));

pages.page3.dwSize = static_cast<DWORD>(
reinterpret_cast<DWORD_PTR>(std: :addressof(pages + 1)) -
reinterpret_cast<DWORD_PTR>(std::addressof(pages.page3)));

This is quite a mouthful, but the idea is that we want to measure the distance to the next
thing. We use std::addressof instead of the traditional & operator to protect against the
possibility that the & operator has been overloaded.2

Yes, this is quite annoying, but it’s also probably not something you're likely to be doing,
because you could just use a pointer to a stack-allocated object which will remain valid until

PropertySheet returns. The main value of the PROPSHEETPAGE payload is in the case
where you need to produce an HPROPSHEETPAGE , since the HPROPSHEETPAGE is probably
going to outlive any stack variables.

But it’s there if you need it.

1 Don’t even think of using #pragma pack(1) toremove the padding. This will misalign the
next structure and result in crashes on alignment-sensitive platforms.

2 Overloading the & operator is something that annoys C++ library authors, although it’s
still nowhere as annoying as overloading the comma operator.

Raymond Chen

Follow

4/5


https://devblogs.microsoft.com/oldnewthing/20200904-00/?p=104172
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

5/5



