
1/7

November 24, 2021

Appending additional payload to a PROPSHEETPAGE
structure

devblogs.microsoft.com/oldnewthing/20211124-00

Raymond Chen

A not-well-known feature of the common controls property sheet is that you can append your

own custom data to the end of the PROPSHEETPAGE structure, and the system will carry it

around for you.

The traditional way of setting up a PROPSHEETPAGE is to use the lParam member to point

to a structure containing additional data that is used by the property sheet:

https://devblogs.microsoft.com/oldnewthing/20211124-00/?p=105961

2/7

struct WidgetNameData

{

 HWIDGET widget;

 bool uppercaseOnly;

 int renameCount;

};

void ShowWidgetProperties(HWIDGET widget, HWND hwndOwner)

{

 WidgetNameData nameData;

 nameData.widget = widget;

 nameData.uppercaseOnly = IsPolicyEnabled(Policy::UppercaseNames);

 nameData.renameCount = 0;

 PROPSHEETPAGE pages[1] = {};

 pages[0].dwSize = sizeof(pages[0]);

 pages[0].hInstance = g_hinstThisDll;

 pages[0].pszTemplate = MAKEINTRESOURCE(IDD_WIDGETNAMEPROP);

 pages[0].pfnDlgProc = WidgetNameDlgProc;

 pages[0].lParam = (LPARAM)&nameData;

 PROPSHEETHEADER psh = { sizeof(psh) };

 psh.dwFlags = PSH_WIZARD | PSH_PROPSHEETPAGE;

 psh.hInstance = g_hinstThisDll;

 psh.hwndParent = hwndOwner;

 psh.pszCaption = MAKEINTRESOURCE(IDS_WIDGETPROPTITLE);

 psh.nPages = ARRAYSIZE(pages);

 psh.ppsp = pages;

 PropertySheet(&psh);

}

For simplicity, this property sheet has only one page. This page needs a WidgetData worth

of extra state, so we allocate that state (on the stack, in this case) and put a pointer to int in

the PROPSHEETPAGE ‘s lParam for the dialog procedure to fish out:

3/7

INT_PTR CALLBACK WidgetNameDlgProc(

 HWND hdlg, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

 auto pageData = (WidgetNameData*)GetWindowLongPtr(

 hdlg, DWLP_USER);

 switch (uMsg)

 {

 case WM_INITDIALOG:

 {

 auto page = (PROPSHEETPAGE*)lParam;

 pageData = (WidgetNameData*)page->lParam;

 SetWindowLongPtr(hdlg, DWLP_USER, (LONG_PTR)pageData);

 ... initialize the page ...

 return TRUE;

 }

 ... other message handlers ...

 }

 return FALSE;

}

For a property sheet dialog procedure, the lParam of the WM_INITDIALOG points to a

PROPSHEETPAGE structure, and you can pull out the lParam to access your private data.

Now, this gets kind of complicated if the property sheet page was created via CreateProp‐

SheetPage , say, because it is a plug-in that is added dynamically into an existing widget

property sheet.

HPROPSHEETPAGE CreateWidgetNamePage(HWIDGET widget)

{

 PROPSHEETPAGE page = {};

 page.dwSize = sizeof(page);

 page.hInstance = g_hinstThisDll;

 page.pszTemplate = MAKEINTRESOURCE(IDD_WIDGETNAMEPROP);

 page.pfnDlgProc = WidgetNameDlgProc;

 page.lParam = (LPARAM)&(what goes here?);

 return CreatePropertySheetPage(&page);

}

You can’t use a stack-allocated WidgetNameData because that will disappear once the

CreateWidgetNamePage function returns. You probably have to create a separate heap

allocation for it, and pass a pointer to the heap allocation as the lParam , but now you also

need to add a property sheet callback so you can remember to free the data when you get a

PSPCB_RELEASE callback.

Exercise: Why is WM_DESTROY the wrong place to free the data? (Answer below.)

4/7

To avoid this extra hassle, you can use this one weird trick: Append your private data to the

PROPSHEETPAGE , and the system will carry it around for you.

struct WidgetNameData : PROPSHEETPAGE

{

 HWIDGET widget;

 bool uppercaseOnly;

 int renameCount;

};

HPROPSHEETPAGE CreateWidgetNamePage(HWIDGET widget)

{

 WidgetNameData page = {};

 page.dwSize = sizeof(page);

 page.hInstance = g_hinstThisDll;

 page.pszTemplate = MAKEINTRESOURCE(IDD_WIDGETNAMEPROP);

 page.pfnDlgProc = WidgetNameDlgProc;

 // store the extra data in the extended page

 page.widget = widget;

 page.uppercaseOnly = IsWidgetPolicyEnabled(WidgetPolicy::UppercaseNames);

 page.renameCount = 0;

 return CreatePropertySheetPage(&page);

}

We append the data to the PROPSHEETPAGE by deriving from PROPSHEETPAGE and adding

our extra data to it. The trick is that by setting the page.dwSize to the size of the entire

larger structure, we tell the property sheet manager that our private data is part of the page.

When the property sheet manager creates a page, it copies all of the bytes described by the

dwSize member into its private storage (referenced by the returned HPROPSHEETPAGE),

and by increasing the value of page.dwSize , we get our data copied there too.

Recall that the lParam parameter to the WM_INITDIALOG message is a pointer to a

PROPSHEETPAGE . In our case, it’s a pointer to our custom PROPSHEETPAGE structure, and

we can downcast to the specific type to access the extra data.

5/7

INT_PTR CALLBACK WidgetNameDlgProc(

 HWND hdlg, UINT uMsg, WPARAM wParam, LPARAM lParam)

{

 auto pageData = (WidgetNameData*)GetWindowLongPtr(

 hdlg, DWLP_USER);

 switch (uMsg)

 {

 case WM_INITDIALOG:

 {

 // the lParam points to our extended page

 pageData = (WidgetNameData*)lParam;

 SetWindowLongPtr(hdlg, DWLP_USER, (LONG_PTR)pageData);

 ... initialize the page ...

 return TRUE;

 }

 ... other message handlers ...

 }

 return FALSE;

}

In pictures: The traditional way creates a separate allocation that the PROPSHEETPAGE ‘s

lParam points to. When the system copies the PROPSHEETPAGE into private storage, the

lParam is copied with it.

 passed to Create-

PropSheetPage

 copy passed to

WM_INITDIALO

dwSize PROPSHEETPAGE dwSize

dwFlags

⋮

 PROPSHEETPAG

 lParam → widget ←

 ⋮ uppercaseOnly

 renameCount

The new way makes the whole thing a giant WidgetNameData with a PROPSHEETPAGE at

the top and bonus data at the bottom.

 passed to Create-

PropSheetPage

 copy passed to

WM_INITDIALOG

6/7

dwSize PROPSHEETPAGE dwSize

dwFlags

⋮

lParam

⋮

 PROPSHEETPAGE dwSize

dwFlags

⋮

lParam

⋮

 widget

uppercaseOnly

renameCount

 widget

uppercaseOn

renameCount

The catch here is that the bonus data is copied to the internal storage via memcpy , so it must

be something like a POD type which can be safely copied byte-by-byte.

If you didn’t know about this trick, you would wonder why the lParam of the WM_INIT‐

DIALOG message points to the full PROPSHEETPAGE . After all, without this trick, the only

thing you could do with the PROPSHEETPAGE pointer was access the lParam ; all the other

fields are explicitly documented as off-limits¹ during the handling of the WM_INITDIALOG

message. Why bother giving you a pointer to a structure where you’re allowed to access only

one member? Why not just pass that one member?

And now you know why: Because you actually can access more than just the lParam . If you

hung extra data off the end of the PROPSHEETPAGE , then that data is there for you too.

Extending the PROPSHEETPAGE structure means that each PROPSHEETPAGE can be a

different size, which makes it tricky to pass an array of them, which is something you need to

do if you’re using the PSH_PROPSHEETPAGE flag. We’ll look at that problem next time.

Bonus chatter: This is an expansion of a previous discussion of the same topic. In that

earlier topic, I said that the array technique requires all of the elements to be the same size.

But next time, I’ll show how to create an array of heterogeneous types.

Bonus bonus chatter: This is similar to, but not the same as, the trick of adding extra

information to the end of the OVERLAPPED structure. In the case of overlapped I/O, the same

OVERLAPPED pointer is used; there is no copying. You can therefore put arbitrary complex

data after the OVERLAPPED ; they don’t have to be POD types. Of course, you have to be

careful to destruct them properly when the I/O is complete.

In the case of a PROPSHEETPAGE , the memory is copied, so the data needs to be memcpy -

safe. You could still use it to hold non-POD types, though, by treating it as uninitialized

memory that the system conveniently preallocates for you. You’ll have to placement-

construct the objects in their copied location, and manually destruct them when the property

sheet page is destroyed.

https://devblogs.microsoft.com/oldnewthing/20110318-00/?p=11183
https://devblogs.microsoft.com/oldnewthing/20101217-00/?p=11983

7/7

Answer to exercise: If the property sheet page is never created (because the user never

clicks on the tab for the page), then the dialog is never created, and therefore is never

destroyed either. In that case, you don’t get any WM_DESTROY message, and the memory

ends up leaked.

¹ The documentation cheats a bit and says that you cannot modify anything except for the

lParam , when what it’s really saying is that you cannot modify any system-defined things

except for the lParam . Your private things are yours, and you can modify them at will.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

