
1/3

November 19, 2021

Why is my C++/CX ref class forbidden from having public
methods that are templates or mention, say, std::vector?

devblogs.microsoft.com/oldnewthing/20211119-00

Raymond Chen

A customer had a class implement in C++/CX¹ and they tried to add a public method:

ref class MyClass

{

public:

 // 1

 std::vector<int> GetValues();

 // 2

 void SetValues(std::vector<int> values);

 // 3

 template<typename T> T GetValue();

};

But this generated errors:

// 1

error C3986: 'SetValue': signature of public member contains native type
'std::vector<int,std::allocator<_Ty>>'

// 2

error C3986: 'GetValues': signature of public member contains native type
'std::vector<int,std::allocator<_Ty>>'

// 3

error C2900: 'T MyClass::GetValue(void)': member function templates in WinRT classes
must be 'private', 'internal' or 'protected private'

That last error message is the big clue.

The C++/CX nonstandard language extension introduces the ref keyword which is used to

mark a class as participating in the Windows Runtime. These classes are automatically

reference-counted, and you access instances of them as if they were pointers, but using ^

instead of * .

https://devblogs.microsoft.com/oldnewthing/20211119-00/?p=105944

2/3

One of the things that happens when you use this extension is that there are new member

access control keywords, and existing keywords change their meanings. C++/CX uses these

member access control keywords to control member access both for C++ code inside the

same module, as well for the Windows Runtime metadata that allows the classes to be used

from other languages that support the Windows Runtime, like C# and JavaScript.

Keyword In metadata In C++

public public public

public protected

protected public

protected public

protected protected protected

private public

public private

internal

(none) public

private protected

protected private

(none) protected

private (none) private

The access control keyword public private is deprecated, and since it is part of the

already-deprecated C++/CX extension, that makes it double-deprecated.

If you use an access control keyword that puts the member into Windows Runtime metadata,

then that member must conform to Windows Runtime rules. One of those rules is that the

types used in the method signature must be expressible in the Windows Runtime. This

means that you can use public enum class , value struct , or ref class , as well as a

handful of primitive types like integers, floating point values, and Platform::String^ .

The std::vector is not one of the allowed types in the Windows Runtime. After all, how

would C# or JavaScript access a std::vector ? That thing is C++-only and has no cross-

language ABI. Indeed, it doesn’t even have a consistent ABI within the C++ language:

different compilers, different versions of the same compiler, or even different compiler

options within the same version of the same compiler, can have different ABI interfaces to

std::vector .

If you intend your Windows Runtime member to be accessible outside your module, then you

need to express the member in terms that can be represented in the Windows Runtime.

On the other hand, if you just want the member to be accessible to other part of your module,

you can switch to one of the member access keywords that excludes the member from

Windows Runtime metadata. That frees you from the restriction of having to conform to

https://docs.microsoft.com/en-us/cpp/cppcx/namespaces-and-type-visibility-c-cx?view=msvc-170

3/3

Windows Runtime rules.

¹ The nonstandard C++/CX extension is no longer the recommended mechanism for using

the Windows Runtime from C++. For one thing, the C++/CX extension is supported only in

C++14 and C++17 modes. You won’t be able to use it with C++20 or later, so your C++/CX

code won’t be able to take advantage of any new language features like concepts. (You can get

coroutine support by adding the /await switch.) I encourage you to stop using C++/CX

and switch to C++/WinRT.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

