
1/2

November 17, 2021

The mental model for StartThreadpoolIo
devblogs.microsoft.com/oldnewthing/20211117-00

Raymond Chen

A customer was having trouble using asynchronous I/O with the Windows thread pool. Their

proof-of-concept program was crashing once they issue their second write. Here’s a sketch:

auto io = CreateThreadpoolIo(fileHandle, callback, nullptr, nullptr);

StartThreadpoolIo(io);

OVERLAPPED pending[NUMBER] = {};

for (int i = 0; i < NUMBER; i++) {

 pending[i].Offset = offset[i];

 pending[i].OffsetHigh = 0;

 bool result = WriteFile(fileHandle, data[i], size[i],

 &bytesWritten, &pending[i]);

 if (!result && GetLastError() != ERROR_IO_PENDING) {

 CancelThreadpoolIo(io);

 }

}

They found that if NUMBER is 1, then everything works great. If NUMBER is greater than 1,

then the first I/O completion is successful, but the second one crashes.

The confusion is over what StartThreadpoolIo does. The customer thought that it needed

to be called once for each file handle. But really, it needs to be called once for each I/O

operation. If you issue ten writes against a file handle, you need to call StartThreadpoolIo

ten times, once before each call.

The point of StartThreadpoolIo is to tell the thread pool to prepare for an incoming

completion against the file handle. If you issue an I/O without first preparing the thread

pool, then the completion arrives and the thread pool doesn’t know what to do with it.

The fix is to move the call to StartThreadpoolIo to immediately before issuing the I/O

operation:

https://devblogs.microsoft.com/oldnewthing/20211117-00/?p=105933

2/2

auto io = CreateThreadpoolIo(fileHandle, callback, nullptr, nullptr);

// StartThreadpoolIo(io); // from here

OVERLAPPED pending[NUMBER] = {};

for (int i = 0; i < NUMBER; i++) {

 pending[i].Offset = offset[i];

 pending[i].OffsetHigh = 0;

 StartThreadpoolIo(io); // to here

 bool result = WriteFile(fileHandle, data[i], size[i],

 &bytesWritten, &pending[i]);

 if (!result && GetLastError() != ERROR_IO_PENDING) {

 CancelThreadpoolIo(io);

 }

}

If you discover that the I/O won’t generate a completion after all (because it failed

synchronously, or because it succeeded synchronously on a handle that is marked as FILE_

SKIP_COMPLETION_PORT_ON_SUCCESS), then you need to call CancelThreadpoolIo

to say, “Um, it looks like there won’t be any completion at all. Sorry.” That way, the thread

pool knows that it shouldn’t be expecting one.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

