The case of the C++/WinRT cached factories that pointed
into freed memory

=. devblogs.microsoft.com/oldnewthing/20211105-00

November 5, 2021

-
Raymond Chen

A customer had a program that crashed inside C++/WinRT:

contoso!winrt::impl::consume_Windows_ApplicationModel_AppExtensions_
IAppExtensionCatalogStatics<winrt::Windows: :ApplicationModel::
AppExtensions: :IAppExtensionCatalogStatics>::0pen+0x22

contoso!winrt::Windows: :ApplicationModel: :AppExtensions::
AppExtensionCatalog::0Open::__12::<lambda_...>::operator()+0x22

contoso!winrt::impl::call_factory+0x42

contoso!winrt::Windows: :ApplicationModel: :AppExtensions::
AppExtensionCatalog: :Open+0x4c

contoso!contoso::impl::FindContosoExtension+0xc2

contoso!ContosoSession: :Initialize+0xc9

contoso!ContosoSession: :Create+0xf6

contoso!ContosoSession: :Run+0x34

kernel32!BaseThreadInitThunk+0x10

ntdll!RtlUserThreadStart+0x2b

contoso!winrt::impl::consume_Windows_ApplicationModel_AppExtensions_
IAppExtensionCatalogStatics<winrt::Windows: :ApplicationModel: :
AppExtensions: :IAppExtensionCatalogStatics>: :0pen+0x22:

mov rax,qword ptr [rax+30h] ds:00007fff 00778030=????277?2?2?2??2?277?7?

0:004> 1n @rax
<Unloaded_AppExtension.d1l1>+0x28000

This is a call to a static method of a Windows Runtime class. We saw some time ago that
static methods are implemented by the factory object. C++/WinRT caches these factory
objects so that subsequent attempts to call static methods can take advantage of the work
done by the first call. But here, we are trying to call the factory, only to discover that it has
been unloaded!

The developers of AllExtension.dll say that their component follows the standard
patterns, including rejecting D11CanUnloadNow if there are any outstanding objects. So
what’s going on? How could they get unloaded while there still outstanding objects?

1/3


https://devblogs.microsoft.com/oldnewthing/20211105-00/?p=105878

I guessed that what happened is that somebody called CoUninitialize , because
Couninitalize will ask a DLL if it is okay to unload now, but the answer is a foregone

conclusion: Whether or not the DLL says that it’s okay to unload, COM is going to unload it.
And that orphans the outstanding references to the DLL’s factories, which are now pointers
into freed memory.

Now, if your module is a DLL that exposes Windows Runtime objects, then your D11Can-
UnloadNow is called when COM uninitializes, and the standard implementation provided by
C++/WinRT empties the factory caches when this happens. That way, when COM
uninitializes, all the cached factories are thrown away, seeing as they are about to become
invalid.

In this case, however, contoso.d1l does not expose any Windows Runtime objects of its
own. Its use of C++/WinRT is purely as a consumer. It was not loaded by COM, and
consequently, its D11CanUnloadNow (if it even had one) would not be called.

When the main program calls into CreateContosoSession , a worker thread is created to
manage the Contoso session. That worker thread initializes COM when it starts and
uninitializes COM when it’s finished, thereby providing a courtesy to the main program,
saving it the hassle of having to initialize COM.

This courtesy, however, came at great personal cost: When the Contoso session ended, the
worker thread called CoUninitialize ,thereby invalidating its own factory cache. When
the host program tried to create a second session, the new worker thread crashed trying to
use a factory from a no-longer-valid cache.

Part of the solution here is to remove the courtesy. Have the main program initialize COM
and just leave it initialized for the lifetime of the process. Not only does that keep the
C++/WinRT factory cache valid, it avoids all the wasted effort of uninitializing COM, only to
initialize it again moments later.

If the host program doesn’t want to dedicate a thread to keeping COM alive, it can use the
CoIncrementMTAUsage function to keep the MTA alive.

The root cause, however, is that contoso.dll isitself not a COM server, so it never gets
called by COM to clean up. Contoso could switch its entry point to a COM entry point (where
the client uses CoCreateInstance or RoActivateInstance to load the DLL), so that
COM is in control of the lifetime and will call D11canuUnloadNow . If that’s not possible,
Contoso could at least register an object in the COM static store so it can clean its factory

cache when COM uninitializes.

Raymond Chen

Follow

2/3


https://devblogs.microsoft.com/oldnewthing/20131106-00/?p=2723
https://devblogs.microsoft.com/oldnewthing/20191114-00/?p=103100
https://devblogs.microsoft.com/oldnewthing/20210208-00/?p=104812
https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

3/3



