
1/4

October 25, 2021

A very brief introduction to patterns for implementing a
COM object that hands out references to itself

devblogs.microsoft.com/oldnewthing/20211025-00

Raymond Chen

A common scenario for a COM object is that it needs to register itself as a callback or

otherwise hand out references to itself. There are a few patterns for this.

One of the first things you have to decide is whether the reference to the main object should

be strong (keep the main object alive) or weak (not be considered for deciding whether the

main object should be kept alive).

Let’s look at the weak pattern first.

If you don’t want the callback registration to keep the object alive, then you typically give the

callback object a weak reference to the main object. When the callback object is invoked, it

converts the weak reference to a strong reference and calls the main object. Since the

reference is weak, the existence of the callback object has no effect on the lifetime of the main

object.

        Callback

        IUnknown ICallback ← event source

    Widget   refcount

client → IUnknown IWidget ← weak reference

    refcount

    state data

 

 

 

https://devblogs.microsoft.com/oldnewthing/20211025-00/?p=105828


2/4

In this model, the only reference counts on the main Widget object come from the client.

When the client releases their last reference, the main Widget destructs, and the main Widget

object unregisters the callback from the event source, thereby causing the Callback object to

destruct as well.

Another pattern is to factor the state data into a shared object:

    Widget       Callback

client → IUnknown IWidget       IUnknown ICallback ← event
source

    refcount       refcount

    shared_ptr → state
data

← some_ptr

 

 

 

If the some_ptr  is a weak reference, then we have the same pattern as before. But if you

make it a shared_ptr , then the callback will keep the state alive. This might be useful if the

Callback is used to signal the completion of some sort of activity, and you need to keep the

state data alive until the activity is complete, but you might want the destruction of the

Widget to issue a Cancel request to the event source to accelerate the completion of the

activity.

In the strong pattern, the callback registration keeps the main object alive. The usual way of

doing this is to just upgrade our first diagram to use a strong reference from the Callback

object to the main object.

        Callback

        IUnknown ICallback ← event source

    Widget   refcount

client → IUnknown IWidget ← strong reference

    refcount

    state data

 



3/4

 

 

You might then realize that there’s no point creating a separate callback object: The main

object can be its own callback.

    Widget

client → IUnknown IWidget

    ICallback ← event source

    refcount

    state data

 

 

 

This is a very common pattern, but it does introduce a few problems compared to the

separate-callback-object pattern.

One problem is that the client can QueryInterface  for ICallback  and use that to

manipulate the Widget in ways that weren’t intended, since it can invoke the callback from

the client and feed it fake data. (Conversely, the event source can QueryObject  for

IWidget , but that is unlikely to occur in practice, since the event source doesn’t care about

widgets.) With the separate callback, the QueryInterface  method main object responds

only to IWidget , and the QueryInterface  method callback object responds only to

ICallback . The client has no way to access the callback object, and the event source has no

way to access the main object.

A second problem is if the main object needs to register for multiple event sources, all of

which use the same ICallback  interface. There is only one ICallback  in the main object,

so it has no choice but to pass the same ICallback  to both event sources, even though we

may want the two callbacks to do different things. Again, the separate callback object avoids

this problem because each callback object can do something different when it is called.

But there’s still a solution to this problem without having to go back to the separate callback

objects. We’ll look at this trick next time, and fleshing out the idea will give us a tour through

a lot of C++ features, so it might be interesting even if you don’t care about COM.



4/4

Raymond Chen

Follow







https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

