
1/4

October 22, 2021

Renaming a file is a multi-step process, only one of
which is changing the name of the file

devblogs.microsoft.com/oldnewthing/20211022-00

Raymond Chen

A customer reported that the ReadDirectoryChangesW function was reporting changes too

soon. No, it wasn’t generating changes from the future, à la Minority Report. Rather, it

generated rename notifications before the rename was complete.

The customer came to this conclusion because they observed their program behaving like

this:

Thread 1 Thread 2

 ReadDirectoryChangesW(
FILE_NOTIFY_CHANGE_
FILE_NAME) .

Call MoveFileEx to rename
a file.

 ReadDirectoryChangesW reports a rename occurred.

 Tries to read the renamed file and gets ERROR_SHARING_
VIOLATION .

MoveFileEx returns.

 Tries to read the renamed file and succeeds.

The ReadDirectoryChangesW function reports the rename before the MoveFileEx

function returns, and consequently before the rename has completed.

What’s going on here?

Well, the first thing to observe is that the customer’s conclusion doesn’t match the evidence.

Observe that the attempt to open the renamed file failed with ERROR_SHARING_

VIOLATION , whereas they expected error would be ERROR_FILE_NOT_FOUND if the file

https://devblogs.microsoft.com/oldnewthing/20211022-00/?p=105822
http://en.wikipedia.org/wiki/Minority_Report_(film)

2/4

hadn’t been renamed yet. The fact that they’re getting ERROR_SHARING_VIOLATION means

that the rename really did occur, but they are unable to access the renamed file due to a

sharing violation.

Okay, let’s look at how renaming a file is performed internally. It’s a multi-step operation.

1. Open the file with DELETE permission.

2. Call NtSetInformationFile with FileRenameInformation .

3. Close the handle.

Opening with DELETE permission grants permission to rename the file. The required

permission is DELETE because the old name is being deleted.

The call with FileRenameInformation is what actually renames the file, and it is here that

the ReadDirectoryChangesW is signaled.

Now that the rename is complete, the handle can be closed.

It is technically correct for the ReadDirectoryChangesW to be signaled once the NtSet‐

InformationFile is done, because the file is well and truly renamed.

Let’s look at that sharing violation again. The customer explained that they tried to open the

file by doing this:

std::ifstream file(path, std::ios::binary, _SH_DENYNO);

The _SH_DENYNO indicates that no sharing operations are denied. So why is sharing

denied?

You were faked out by a flag name that makes sense in context, but has ended up being

confusing due to the passage of time.

Let’s look at those sharing flags in context:

Flag Meaning Mnemonic

_SH_DENYRD Deny read, allow write. Deny read.

_SH_DENYWR Allow read, deny write. Deny write.

_SH_DENYRW Deny read, deny write. Deny read and write.

_SH_DENYNO Allow read, allow write. Deny none.

The mnemonic for _SH_DENYNO is “Deny none”, but the word “none” is only with the

context of read and write. You could say that it denies neither country nor western.

https://docs.microsoft.com/en-us/windows-hardware/drivers/ddi/ntifs/nf-ntifs-ntsetinformationfile
https://docs.microsoft.com/en-us/cpp/c-runtime-library/reference/fsopen-wfsopen?view=msvc-160
https://www.youtube.com/watch?v=cSZfUnCK5qk

3/4

The important sharing mode here is neither read nor write. It’s FILE_SHARE_DELETE ,

which means “I’m okay with letting someone delete or rename the file while I have it open.”¹

This is a sharing flag that programs really should be using more often than they do, and the

fact that the C runtime doesn’t give you an easy way to set this sharing flag may be a

contributing factor.

If you call the CreateFile function directly, then you can pass the FILE_SHARE_DELETE

sharing flag, and then you’ll be able to open the file even before MoveFileEx cleans up its

handle.

“So why not have ReadDirectoryChangesW wait until the handle is closed before raising

the rename notification?”

Well, for one thing, the file really has been renamed as soon as the NtSetInformationFile

is complete, so delaying the notification would be a little disingenuous. But seeing as it’s just

a small delay, maybe that’s okay, seeing as the whole thing is a notification anyway, and

notifications can be delayed for other reasons.

But the real reason is that delaying the notification until the close of the handle could delay it

indefinitely. The caller is not required to close the handle immediately after the NtSet‐

InformationFile returns. It could leave the handle open so it can perform other operations

on the file. For example, maybe it’s a log file that is being renamed while it is still being

actively written to. That log file’s new name takes effect immediately, but the handle won’t be

closed for a long time yet.

The customer confirmed that switching to a direct CreateFile with FILE_SHARE_

DELETE allowed them to open and read the file immediately after it was renamed.

Moral of the story: Don’t forget FILE_SHARE_DELETE . It lets you coexist with code that is

deleting or renaming the file you are looking at.

¹ My colleague Malcolm Smith, whom I rely on for all things filesystem, notes that the name

FILE_SHARE_DELETE is rather misleading. Because the fact that you opened the file for

FILE_SHARE_DELETE prevents it from being deleted, even though you’re allowing it! In

Windows, when you mark a file for deletion, the deletion doesn’t take effect until all

outstanding handles are closed, and holding a file open for FILE_SHARE_DELETE means

that the last handle isn’t closed yet. What FILE_SHARE_DELETE does is allow the file to be

opened by others in DELETE mode, which as it happens is a prerequisite for both deleting

and renaming files.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

4/4

