
1/2

October 15, 2021

What does the SizeOfImage mean in the MODULEINFO
structure?

devblogs.microsoft.com/oldnewthing/20211015-00

Raymond Chen

A customer had a program that supported a plug-in model, and they wanted to do some

analysis of how much memory those plug-ins were costing. They can already track the

dynamic memory allocations performed by those plug-ins (because the plug-in model is very

restrictive), but they were interested in the memory footprint of the module’s code and static

data segments. They were getting information about the plug-in by calling GetModule‐

Information and looking at the SizeOfImage , but they wanted some guidance on how to

interpret the value. Would a large zero-initialized static array, for example, count toward the

SizeOfImage ? They know that zero-initialized static data tends not to occupy space in the

file itself, but do they show up in the SizeOfImage ? What is that the size of, anyway?

Recall that the MODULEINFO structure gets its information from the loader, and the loader’s

job is managing the modules loaded by a process. The SizeOfImage in is paired with the

lpBaseOfDll to describe the virtual address range that the DLL’s image occupies after

being loaded from disk. The loader uses this information for various things, including

responding to the GET_MODULE_HANDLE_EX_FLAG_FROM_ADDRESS flag that is passed to

the GetModuleHandleEx function.

The size of the image in the virtual address space includes its code, static data, and resources.

This could be bigger or smaller than the size on disk: The file on disk may contain bytes that

are not mapped into memory, like the digital certificate, or any additional payload appended

to the end of the file. On the other hand, there are things that occupy space in the virtual

address space that aren’t in the file, like zero-initialized data or inter-section padding. A

module could even intentionally lay out its address space with gaps between sections larger

than the minimum required to maintain alignment.

If you are looking to measure the memory footprint of the plug-in, you’ll have to take these

things into account. Do you want to count read-write data differently from code, resources,

and read-only data? Not all of the code, resources, read-only and read-write data are likely to

be read from disk, although they do consume space in the virtual address space. In particular,

the relocation table is almost certainly not ever going to be used.

https://devblogs.microsoft.com/oldnewthing/20211015-00/?p=105802

2/2

Deciding which sections to count and which not to count is something you need to decide for

yourself. The module itself does help you out by providing SizeOfCode , SizeOfData , and

SizeOfUninitializedData to save you the trouble of having to calculate those values

yourself. Those three values cover code, data (both read-only and read-write), and zero-

initialized data, respectively. They’re probably a good start if you’re not interested in

relocations, resources, or exception tables.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

