
1/3

October 4, 2021

Some lesser-known powers of std::optional
devblogs.microsoft.com/oldnewthing/20211004-00

Raymond Chen

C++17 introduced std::optional<T> which lets you augment the values of a type T with

a bonus value known as std::nullopt which semantically represents the absence of a

value. A std::optional which holds the value std::nullopt is known as empty.

The basic operations on std::optional are

Checking if it holds a value (has_value())

Retrieving the value (value())

Assigning a value (=)

Clearing the value and returning to the empty state (reset())

There are other lesser-known powers of the std::optional .

Contextual conversion

If used in places where the language expects a Boolean (as the controlling expression for

if , while , for , ?: , or on either side of a || or &&), a std::optional is truthy if

is has a value and falsy if it is empty.

if (opt)

is the same as

if (opt.has_value())

Note that this does not test whether the wrapped value is falsy.

https://devblogs.microsoft.com/oldnewthing/20211004-00/?p=105754

2/3

std::optional<bool> opt1 = false;

if (opt1) {

 // this executes because the variable

 // is non-empty (even though it is false)

}

std::optional<void*> opt2 = nullptr;

if (opt2) {

 // this executes because the variable

 // is non-empty (even though it is nullptr)

}

My opinion: If T is itself contextually convertible to bool , write out opt.has_value()

explicitly to avoid confusion.

Equality comparison against a value

An empty std::optional<T> compares unequal to any T .

std::optional<int> opt;

if (opt == 0) {

 // does not execute because the variable is empty

 // and is not equal to any integer.

}

My opinion: Use this instead of the more verbose if (opt.has_value() && opt.value()

== 0) .

Ordering comparison against a value

An empty std::optional compares less than any non-empty std::optional , and also

less than any value.

std::optional<int> opt;

if (opt > 0) {

 // does not execute because "empty" is

 // less than all values

}

My opinion: Avoid except when sorting, because this behavior differs from NaN (another

popular “There’s nothing useful here” value) in that the corresponding opposite-sense test

does execute.

if (opt <= 0) {

 // executes because "empty" is less than all values

}

Instead, write it out as

3/3

 if (opt.has_value() && *opt > 0)

 // or

 if (opt.has_value() && *opt < 0)

Note that opt.value() and *opt both return the wrapped value but have different failure

modes. The explicit opt.value() call will throw a std::bad_optional_access

exception if the object is empty, whereas the *opt bypasses the verification and you get

undefined behavior if the object turns out to be empty after all. In the above case, you can

write the code equivalent as

 if (opt.has_value() && opt.value() > 0)

 // or

 if (opt.has_value() && opt.value() < 0)

because the compiler can optimize out the redundant emptiness test.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

