
1/4

September 29, 2021

The subtleties of CreateStreamOnHGlobal, part 2:
Suppressing the deletion of an unknown HGLOBAL

devblogs.microsoft.com/oldnewthing/20210929-00

Raymond Chen

Last time, we looked at the easy case of the CreateStreamOnHGlobal function, where you

just hand an HGLOBAL to the stream and wipe your hands of it.

The weird case is where you pass fDeleteOnRelease = FALSE . For now, let’s look at the

case where you pass a null HGLOBAL , but also pass fDeleteOnRelease = FALSE ,

indicating that you want the stream to create its own HGLOBAL , but not to destroy it on

destruction.

The typical use case for this pattern is where you create a stream, write to it, and then extract

all the data in the form of an HGLOBAL . To get the HGLOBAL back out, you must call Get‐

HGlobalFromStream . If you don’t do that, then the HGLOBAL inside the stream is leaked,

and you have no way to rescue it.

https://devblogs.microsoft.com/oldnewthing/20210929-00/?p=105742
https://devblogs.microsoft.com/oldnewthing/20210928-00/?p=105737

2/4

// First, the version without RAII types.

HGLOBAL CreateHGlobalFromStuff()

{

 HGLOBAL hglob = nullptr;

 IStream* stream = nullptr;

 if (SUCCEEDED(

 CreateStreamOnHGlobal(nullptr, FALSE, &stream))) {

 if (FAILED(GetHGlobalFromStream(stream, &hglob))) {

 __fastfail(FAST_FAIL_FATAL_APP_EXIT);

 }

 WriteStuffToStream(stream);

 stream->Release();

 }

 return hglob;

}

void Sample()

{

 HGLOBAL hglob = CreateHGlobalFromStuff();

 if (hglob) {

 DoStuffWith(hglob); // maybe put it on the clipboard

 GlobalFree(hglob);

 }

}

And with RAII:

wil::unique_hglobal CreateHGlobalFromStuff()

{

 wil::unique_hglobal hglob;

 wil::com_ptr<IStream> stream;

 THROW_IF_FAILED(

 CreateStreamOnHGlobal(nullptr, FALSE, &stream));

 FAIL_FAST_IF_FAILED(

 GetHGlobalFromStream(stream.get(), &hglob));

 WriteStuffToStream(stream.get());

 return hglob;

}

void Sample()

{

 wil::unique_hglobal = CreateHGlobalFromStuff();

 DoStuffWith(hglob.get()); // maybe put it on the clipboard

}

3/4

The idea here is that you create an HGLOBAL -based stream with no initial memory block,

which means that the stream object creates its own empty one. From that, you immediately

get the inner HGLOBAL so you can access the data that is being managed. You do this

immediately so that the memory block is held in an RAII type so it won’t be leaked if

something goes wrong later.

You then write stuff to the stream, which causes it to go into the HGLOBAL . You then throw

the stream away and keep the HGLOBAL . The stream’s destruction does not destroy the

HGLOBAL because you passed fDeleteOnRelease = FALSE .

Note that there is a bit of a scary place: If GetHGlobalFromStream fails, we are kind of

stuck. The HGLOBAL inside the stream is going to be leaked, and there’s nothing we can do

about it. Fortunately, GetHGlobalFromStream always succeeds if the stream it was given

came from the CreateStreamOnHGlobal function.

The caller takes the resulting HGLOBAL , does something with it, and then frees the

HGLOBAL .

It is crucially important that you keep your eye on the stream. You have to be sure that

nobody has extended the lifetime of the stream (by calling AddRef), because you just freed

the HGLOBAL , and any attempt to use the stream beyond that point will be a use-after-free

bug.

One mistake people make with passing fDeleteOnRelease = FALSE is forgetting that they

are now responsible for freeing the HGLOBAL that is inside the stream. If you passed an

HGLOBAL of NULL when creating the stream, then you must call GetHGlobalFromStream

to find out what HGLOBAL ended up being allocated for the stream, because it’s your

responsibility to free it.

// Do not use! This code leaks the global handle.

IStream* stream;

if (SUCCEEDED(CreateStreamOnHGlobal(nullptr,

 FALSE, &stream)) {

 WriteStuffToStream(stream);

 ReadStuffFromStream(stream);

 stream->Release();

}

This code is under the the mistaken belief that the fDeleteOnRelease parameter controls

not whether the stream frees its internal HGLOBAL but rather whether it frees the HGLOBAL

that was passed in. And since they passed nullptr as the incoming HGLOBAL , they

certainly don’t want the stream to try to free a null pointer. But that’s not what fDeleteOn‐

Release means.

4/4

In the case where you aren’t interested in extending the lifetime of the inner HGLOBAL

beyond the lifetime of the stream, just pass fDeleteOnRelease = TRUE and let the

HGLOBAL be destroyed as part of the natural destruction of the stream.

Next time, we’ll look at what happens if you provide an initial HGLOBAL and combine it with

fDeleteOnRelease = FALSE .

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

