
1/2

September 28, 2021

The subtleties of CreateStreamOnHGlobal, part 1:
Introduction and basic usage

devblogs.microsoft.com/oldnewthing/20210928-00

Raymond Chen

The CreateStreamOnHGlobal function lets you create a COM IStream that uses an

HGLOBAL memory block as its backing store. It takes two input parameters: an optional

HGLOBAL that represents the memory block to use, and a flag called fDeleteOnRelease =

FALSE that controls whether the stream object frees the HGLOBAL when it is destroyed. The

initial contents and size of the stream correspond to the initial contents and size of the

HGLOBAL ; if you don’t pass one, then then the function will create its own from scratch and

start with an empty stream.

Sounds simple, right?

It stops being simple when you start exploring the dark corners.

But let’s start in the brightly-lit area: The normal case where you pass fDeleteOnRelease =

TRUE .

Passing fDeleteOnRelease = TRUE represents an ownership transfer. The stream assumes

ownership of the HGLOBAL you pass in (assuming you passed one at all), and it is free to do

with it whatever it likes. When the stream is destroyed, it frees the HGLOBAL , too.

The rule in this case is simple: Once you give an HGLOBAL to the CreateStreamOnHGlobal

function, it’s not yours any more. Correct usage would be something like this:

HGLOBAL hglobal = CreateInitialContents();

IStream* stream = NULL;

if (SUCCEEDED(CreateStreamOnHGlobal(

 hglobal, TRUE, &stream))) {

 hglobal = NULL; // Not our HGLOBAL any more

}

If you’re using a smart pointer library, you would perform what is commonly known in

Windows as a Detach operation, but which the C++ standard library calls release , which

is not the same as a COM Release, so don’t get confused.

https://devblogs.microsoft.com/oldnewthing/20210928-00/?p=105737

2/2

wil::unique_hglobal hglobal = CreateInitialContents();

wil::com_ptr<IStream> stream;

if (SUCCEEDED(CreateStreamOnHGlobal(

 hglobal.get(), TRUE, &stream))) {

 hglobal.release(); // Not our HGLOBAL any more

}

The stream object assumes ownership of the HGLOBAL and will treat it as its own personal

property. If somebody writes to the stream, it will write to the HGLOBAL . If the write extends

beyond the end of the HGLOBAL , or if somebody calls IStream::SetSize to change the

size of the stream, then it will resize the HGLOBAL correspondingly. But that’s okay, because

you gave up that HGLOBAL back when you created the stream. Whatever the stream does

with the HGLOBAL is no longer your business.

That’s the easy case.

Next time, we’ll start looking at the hard case where you pass fDeleteOnRelease = FALSE .

Bonus chatter: Why does the CreateStreamOnHGlobal function have such dark and

shady corners? This function dates back to Windows 3.1, back when a powerful computer had

4MB of memory, and your typical computer had much less. Software development kits cost

thousands of dollars, and the expectation was that if you bought one, it was because you were

a professional developer who understood how the system worked down to a very low level.

Programming was hard because nobody expected it to be easy.

Raymond Chen

Follow

https://devblogs.microsoft.com/oldnewthing/author/oldnewthing

